

Low-Voltage Servo Products User Manual V3.5

深圳市华成工业控制股份有限公司

Shenzhen Huacheng Industrial Control Co., LTD.

Introduction

First of all, thank you very much for choosing the low-voltage servo products produced by Shenzhen Huacheng Industrial Control Co., LTD.

This user manual is for low voltage servo products. It will provide you with instructions of the installation, wiring, system operation, alarm and solutions, and other relevant details and matters for attention.

In order to correctly use the low voltage servo products, give full play to the performance of the system and ensure the safety of users and equipment, please read this manual carefully before using. Incorrect operation may cause abnormal operation of low voltage servo products and even equipment damage, personal injury and other accidents! As our company is devoted to the continuous improvement of products, there will be no further notice if the material provided by the company is changed.

CONTENTS

INTRODU	CTION	I
CHAPTER	1 PRODUCT SPECIFICATIONS AND NAMING RULES	1
1.1	Servo Driver Specifications	1
1.2	Servo Drive and Servo Motor Naming	2
	1.2.1 Servo Driver Naming	2
	1.2.2 Servo Motor Naming	3
CHAPTER	2 PRODUCT INSTALLATION AND PRECAUTIONS	4
2.1	Safety Precautions	4
	2.1.1 Danger	4
	2.1.2 Notes	4
2.2	Product Installation and Wiring	5
	2.2.1 Product Size and Installation	5
CHAPTER	3 PRODUCT WIRING	
3.1	Port Definition	13
	3.1.1 Dial Switch CN1	13
	3.1.2 Communication Port CN2/CN3	
	3.1.3 Motor Encoder Port CN4	14
	3.1.4 Input Power Port CN5	15
	3.1.5 Motor Power Line/Signal Input and Output Port CN6	15
	3.1.6 Brake Resistance Port CN7	16
	3.1.7 Motor Band Brake Port CN8	16
3.2	Electrical Wiring Diagram	16
CHAPTER	4 PARAMETER TABLE, COMMUNICATION FUNCTION AND UPPER COMPUTER	22
4.1	Parameter Table	
4.2	Modbus RTU Protocol	50
	4.2.1 Function Code 16#03: Read Register	
	4.2.2 Function Code 16#06: Write Single Register	51
	4.2.3 Function Code 16#10: Write Serial Registers	51
	4.2.4 No Response and Abnormal Response	
4.3	CANopen Communication Protocol	53
	4.3.1 CANopen Specification	54
	4.3.2 CAN Wiring	55
	4.3.3 CANopen Communication Network Configuration	56
	4.3.4 Example for Using CANopen	71
4.4	ServoTuner Upper Computer Software	77

	4.4.1 Read/Write Servo Parameters	77
	4.4.2 Collect Servo Curves	78
4.5	Set Motor Code by ServoTuner	79
4.6	Update Servo Program by ServoTuner	80
CHAPTER	5 SERVO ALARM DIAGNOSIS AND SOLUTIONS	82
CHAPTER	6 WARRANTY TERMS	84
6.1	General Rules	84
6.2		84
	Servo warranty Period	01

Chapter 1 Product Specifications and Naming Rules 1.1 Servo Driver Specifications

Input Power		16~70VDC	
Output Rated Current		10/20/50Arms	
Outpu	t Rated Power	100/200/400/750W/1kW/1.5kW/1.8kW/2kW	
Co	ntrol Mode	FOC Vector Control	
	Work Temperature	-40°C∼45°C	
Eneri	Stored	-40°C∼45°C	
EIIVI		000/PH holey. No condensation	
roniii		2000m balan	
ent	Altitude		
	Vibration	4.9m/sec2. Frequency10~55Hz	
	Environment	No flammable, explosive, corrosive gas, salt mist and	
	around	conductive dust	
Dig	gital Input	Depending on the model, a maximum of 7 channels are supported.	
Dig	ital Output	Depending on the model, a maximum of 5 channels are supported.	
External Brake		Support	
Motor Band Brake		Support	
Analog Input		Not support, Can be customized	
Ana	alog Output	Not support, Can be customized	
Pulse Input		Depending on the model, input mode support P+D/A+B, input frequency single-end 200kHz/ differential 500kHz, input voltage 24V.	
Pu	lse Output	Arbitrary frequency division output, not support.	
Enco	der Feedback	$A \pm /B \pm /Z \pm$, hallU $\pm /V \pm /W \pm$ Incremental encoder; Absolute value encoder (custom products)	
Con	munication	RJ45 Port×2: Modbus communication protocol; CANopen	
	Function	CiA402 communication protocol	
Storage Function		EEPROM Power down save	
Cooling Mode		Natural cooling	
Overload Capacity		Depending on the model, overload level can be set, the maximum support 3.5x overload 3S	
Alarm Function		Over-current, overheat, over-voltage, under-voltage, overload, over-speed, abnormal encoder and other alarms	
Upper computer software		ServoTuner Servo upper computer software	

1.2 Servo Drive and Servo Motor Naming 1.2.1 Servo Driver Naming

$\frac{\mathsf{S}\,\mathsf{S}}{1}\,\frac{\mathsf{T}\,\mathsf{S}\,1}{2}\,\frac{\mathsf{A}\,\mathsf{U}}{3\,\overline{4}\,\overline{5}}\,\frac{\mathsf{I}\,0\,0}{6}$

Identification	Driver Series	Identification	Extend		
	SS: RS485 Bus		A: With Pulse Control		
	ES: EtherCAT Bus	(4)	B: Without	Pulse Control	
Identification	Applicated Industry	Identification	Inpu	t Voltage	
	TS: General industry		U: DC24V	R:Three-phase AC220V	
0	ZJ: Gate Industry	5	V: DC48V	S:Single-phase AC220V	
(2)	YT: PTZ Industry		W: DC60V	T:Three-phase AC380V	
			X: DC16-70V		
Identification	Number of Axis	Identification	Output R	ated Current	
	1: 1 Axis		039: 0.	$3A(3 \times 10^{-1}A)$	
0	2: 2 Axes	Ø	289: 2.3	$8A(28 \times 10^{-1}A)$	
3	3: 3 Axes	\bigcirc	100: 10	$(10 \times 10^{\circ} \text{A})$	
	4: 4 Axes		101: 100A (10×10^{1} A)		

For example: "SSYT3BX100100100" indicates "Modbus/PTZ/3-axis/16[~]70VDC/10A10A10A"; "SSTS1AX500" indicates "Modbus/CANopen/General/1-axis/With pulse/16~70VDC/50A"; "ESTS2BX200200" indicate "EtherCAT/General/2-axis/16⁷0VDC/20A20A"; "CSTS2BX100200" indicates "CANopen/General/2-axis/16~70VDC/10A20A".

* NOTES: CANopen is standard for SS series of single-axis low-voltage servo, so the original CS series and SS series are unified into SS series (i.e. CS single-axis series is removed).

1.2.2 Servo Motor Naming

H C 7	J	06	04	30	D	1 K	UAA
1	$\overline{2}$	3	4	5	$\overline{6}$	$\overline{\bigcirc}$	$\overline{8}\overline{9}\overline{10}$

Identification	Motor Series	Identification	Extend	
1	HC7:HC7 Series of motor	(10)	A:Reserve	
Identification	Motor Inertia	Identification	Motor Brake	
2	J:Small Inertia G:Medium Inertia	9	A:Without Brake	
	C:Special customization		B:With Brake	
Identification	Motor Frame	Identification	Motor Structure	
	04:40mm Base	8	U:With key and screw hole,without brake, with oil seal	
	06:60mm Base		V:With key and screw hole, with brake, with oil seal	
0	08:80mm Base	Identification	Encoder Type	
3	09:90mm Base		1K:2500 line incremental magnetic encoder	
	10:100mm Base	\overline{O}	1H:2500 line incremental optical encoder	
	13:130mm Base		3K:17 Bit ABS encoder	
	18:180mm Base		4K:23 Bit ABS encoder	
Identification	Rated Power	Identification	Rated Voltage	
	A5:50W		C:60V	
	01:100W	6	D:48V	
	02:200W		F:24V	
	04:400W	Identification	Rated Speed	
(4)	08:750W		10:1000rpm	
	10:1kW		15:1500rpm	
	15:1.5kW	5	20:2000rpm	
	20:2kW		25:2500rpm	
			30:3000rpm	

Chapter 2 Product Installation and Precautions

2.1 Safety Precautions

Declare: In order to prevent damage to people and equipment, please observe the following items when using servo products.

2.1.1 Danger

Not directly immersed in water, oil or other	May cause electric shock, fire,
liquid environment for use.	malfunction, damage
Not directly exposed to conductive dust, salt	May cause electric shock, fire,
spray environment.	malfunction, damage
Do not use in inflammable and explosive	May cause electric shock, fire,
environment.	malfunction, damage
Not be used in the environment with severe	May cause electric shock, fire,
shock.	malfunction, damage
Do not use in the environment with poor heat	May cause fire, malfunction,
dissipation.	damage
Do not connect motor directly with city	May cause electric shock,
electricity.	malfunction, damage
De not evenese en stress motor wires	May cause electric shock,
bo not expose of stress motor wries.	malfunction, damage
Drivers, motors and moving parts must not be	May cause electric shock,
touched while operation.	malfunction, damage

2.1.2 Notes

Do not fall or invert during lifting, do not grab	May cause injury, malfunction	
motor shaft end and cable.		
Do not place heavy objects on the product.	May cause malfunction	
Use after correctly wiring in accordance with user	May cause electric shock,	
manual by electrical engineer.	malfunction, damage	
Driver motor and encoder must be well grounded	May cause electric shock,	
Dilver, motor and encoder must be well grounded.	interference	
Do not expose the product directly in outdoor use.	May cause injury, malfunction	
Do not disassemble or convert the product.	May cause injury, malfunction	
Follow the specific installation method and	May cause injury malfunction	
direction.	may cause injury, mailunction	
Ensure the driver and motor are used at reasonable	May agues malfunction	
temperature, humidity and altitude.	may cause mailunction	
The driver input voltage must be within the specific	May agues malfunction	
range.	may cause mailunction	
Be sure to cut off the power supply if it has been	May aguas injuny	
out of service for a long time.	may cause injury	
When the product is scrapped, it shall be treated	May cause environmental	
as industrial waste.	pollution	

2.2 Product Installation and Wiring 2.2.1 Product Size and Installation 2.2.1.1 Driver Size and Installation

SSZJ1B

_____6_____

72.0

CN3

CN2

24V 24V COM COM BRK- BRK+ SRDY SON ALM CLR DIR- CWL DIR- CWL DIR+ ORG PUL- INH

> CN4 ENCODER

РВ W V CN5 U

> RB-DC-RB+ DC+

•

0

SSTS1A200

2.2.1.2 Motor Size and Installation

Dimensions and installation of servo motor are shown as below. (Note: The appearance of different models is different, but the use method is the same.)

- (12)

Chapter 3 Product Wiring

3.1 Port Definition

Note: The appearance and port layout of different models are different, but the use method is the same. For details, please refer to the silk screen printing of the physical shell.

3.1.1 Dial Switch CN1

The dial switch can be used for specific functions. For SSTS1A, the dial switch is used to set the terminal resistance of RS485 or CAN bus. (It takes effect when it is turned to ON).

For SSZJ1B product, dial switch can be used to modify the door opening and closing operation time:

	1 2 3 ON +	4 1 2 ON ↓	3 4	
Run Time	SW-1	SW-2	SW-3	SW-4
0.5			ON	ON
seconds			UN	ON
0.6			ON	OFE
seconds			UN	UP
0.7			OFF	ON
seconds			01.1.	ON
0.8			OFF	OFF
seconds			OFF	OFF

3.1.2 Communication Port CN2/CN3

The communication port is used for communication between servo and upper computer. These two communication ports have the same function and can be used to connect multiple servo slave stations in series. SSTS1A adopts standard RJ45 port. It is defined as following:

CN2/3	Signal	Explain	CN2/3	Signal	Description
1	CAN_L	CAN_L signal	5	NC	
2	CAN_H	CAN_H signal	6	NC	
3	GND	CAN connect earth	7	А	RS485 signal A
4	NC		8	В	RS485 signal B

SSZJ1B adopts 3-pin green terminal. It is defined as following:

CN2/3	Signal	Explain
1	А	RS485 signal A
2	GND	Power supply connect earth
3	В	RS485 signal B

3.1.3 Motor Encoder Port CN4

The encoder ports of each sub-series of driver are unified as DB15, which supports incremental encoder and absolute value encoder.

CN4	Signal	Explain	Signal	Explain
1	V+	Encoder signal V+		
2	U+	Encoder signal U+		
3	Z+	Encoder signal Z+		
4	B+	Encoder signal B+		
5	A+	Encoder signal A+		
6	V-	Encoder signal V-		
7	U-	Encoder signal U-		
8	Z-	Encoder signal Z-		
9	B-	Encoder signal B-		
10	A-	Encoder signal A-		
11	11 W	Encodor signal W+	В	Encoder serial
	W 1	Encouel Signal W		signal B
19	W—	Freedor signal W-	٨	Encoder serial
12	W	Encouer Signar " A	А	signal A
12	5V	Encodor 5V Power supply	5V	Encoder 5V Power
15	51	Encoder 5V Power Supply	57	supply
14	CND	Encoder signal connects	CND	Encoder signal
14	GIND	earth	UND	connects earth
15	PE	Encoder shield	PE	Encoder shield

3.1.4 Input Power Port CN5

DC voltage input port. SSZJ1B adopts 2-pin terminal:

CN5	Signal	Explain
1	DC+	Power supply+
2	DC-	Power supply-

SSTS1A adopts 7-pin terminal, and it contains interfaces for input power supply, motor power lines, and brake resistance:

CN5	Signal	Explain
1	PE	Motor shield
2	W	Motor W phase
3	V	Motor V phase
4	U	Motor U phase
5	RB-	Brake resistance-
6	DC-	Power supply-
7	DC+/ RB+	Power supply+/Brake
		resistance+

3.1.5 Motor Power Line/Signal Input and Output Port CN6

 $\ensuremath{\mathsf{SSZJ1B}}$ sub-series CN6 is used for power line connection port of three-phase AC servo motor :

CN6	Signal	Explain
1	U	Motor U-phase
2	V	Motor V-phase
3	W	Motor W-phase
4	PE	Motor shield

SSTS1A sub-series CN6 is used for signal input and output:

CNC	Cirme 1	Englain	CNIC	Cirral	Englain
CIND	Signal	Explain	CIND	Signal	Explain
1	24V	External connect 24V+	11	24V	Output 24V+
2	COM	External connect 24V-	12	СОМ	Output 24V-
3	BRK-	Brake-	13	BRK+	Brake+
4	SRDY	Servo ready DO	14	SON	Servo Enable DI
5	ALM	Servo alarm DO	15	CLR	Alarm clear DI
6	AT	Location arrival DO	16	CWL	Clockwise travel limit DI
7	DIR-	Direction signal-	17	CCWL	Counterclockwis e travel limit DI
8	DIR+	Direction signal+	18	ORG	Origin signal DI
9	PUL+	Pulse signal+	19	HOM	Return command DI
10	PUL-	Pulse signal-	20	INH	Command Pulse Ban DI

3.1.6 Brake Resistance Port CN7

Used for external braking resistance of SSZJ1B. SSTS1A sub-series focuses on CN5.

CN7	Signal	Explain
1	RB+	Brake resistance+
2	RB-	Brake resistance-

3.1.7 Motor Band Brake Port CN8

Used for SSZJ1B motor brake. SSTS1A sub-series focuses on CN6.

CN8	Signal	Explain
1	BRK+	Brake+
2	BRK-	Brake-

3.2 Electrical Wiring Diagram

SSTS1A Wiring Diagram

SSTS1A Wiring Diagram

Single Terminal Wiring 2

Single Terminal Wiring 4

SSYT3B Wiring Diagram

Chapter 4 Parameter Table, Communication Function and Upper Computer

4.1 Parameter Table

The main parameters of servo driver are shown in the table below. Users can set various parameters conveniently by ServoTuner, the servo upper computer software, according to the application requirements.

Servo Driver Parameter Table

Domom	Domom	Parameter	Parameter Description		
	Param	range	(R/W-Read-Write, R-Only read,P-Position mode, S-Speed		
number	name	(Default)	mode, T-Torque mode)		
P000	Servo slave station address ★(Note)	1~127 (1)	Servo Modbus communication slave station address, and at the same time be the node ID of CAN communication. Servo supports standard Modbus RTU communication protocol, and can be used as a slave to communicate with master PLC, motion control card, and upper computer software. Supports CiA402 protocol of CAN2. OA. Read-Write Attributes: R/W Applicable Mode: ALL		
			Servo mode selection.		
P001	Servo mode ★	0~20 (7)	0 Pulse Position Mode 1 Analog speed Mode 2 Analog Torque Mode 3 Pulse Position/Analog speed Mode 4 Pulse Position/Analog Torque Mode 5 Analog Speed/Analog Torque Mode 6 Communication Position Mode; PP Mode 7 Communication Speed Mode; PV Mode/CSV Mode of CANopen R 8 Communication Torque Mode; PT Mode/CST 9 Communication Position/Communication 9 Communication Position/Communication 10 Torque Mode 11 Communication Speed/Communication 11 Communication Speed/Communication 12 Position Speed/Communication 13 Position Speed/Communication 14 Communication Speed/Communication 15 Attributes P/W		
P002	Torque limit source setting	0~2 (1)	Read-Write Attributes: R/WApplicable Mode: ALLSet the source of torque limitation for anticlockwise and clockwise rotation directions.Counterclockwise CCWClockwise CW0CCWTL Analog signal1P119 Communication torque limit 12P119 Communication torque limit 1		

P003	Stroke limit function setting	0~2 (1)	Set the specific action of the servo travel limit.Stroke Limit ActionStroke limit function is effective and acts in accordance with P126 configuration1Invalid Stroke Limit Function2Alarm is triggered when the stroke limit is setRead-Write Attributes: R/W
P004	P001=1时 Command speed source	0~3 (0)	Source of instruction speed for analog speed mode.Instruction Speed Source0Analog Speed Signal11~4 Internal speed21~3 Internal speed/Analog Speed Signal31~8 Internal speedRead-Write Attributes: R/WApplicable Mode: S
P005	Communication command selection	0~31 (0)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
P006	Zero speed clamp function setting	0~1 (0)	Set the zero speed clamp function.0Zero speed clamp function is invalid1Zero speed clamp function is effective, servo action is affected by zero speed clamp input signal (set P122, P203 command zero speed clamp function is effective)Read-Write Attributes: R/WApplicable Mode: S/T
P007	Factory reserve		
P008	Factory reserve		
P009	Factory reserve		
P010	RS485 Communication baud rate★	0~5 (2)	Baud rate of communication between servo and upper systemvia RS485.Baud rateBaud rate04800bps319600bps4219200bps51115200bpsRead-Write Attributes: R/WApplicable Mode: ALL

			Servo and upper system is communicated by CAN.
P011	CAN Communicatio	1~7	Baud rate Baud rate
			1 1Mbps 5 125kbps
			2 800kbps 6 50kbps
	n baud rate★	(1)	3 500kbps 7 20kbps
			4 250kbps
			Read-Write Attributes: R/W Applicable Mode: ALL
D010	Factory		
P012	reserve		
DO19	Factory		
P013	reserve		
D014	Factory		
P014	reserve		
P015	Factory		
1015	reserve		
	Servo		
	power-up		Configure servo power-up auto enable.
P016	automatic	0~1	0 Servo power on does not enable
1010	enable	(0)	1 Servo power-on auto enable
	configuratio		Read-Write Attributes: R/W Applicable Mode: ALL
	n★		
P017	Factory		
	reserve		
D010	Current loop	0~1000	Current loop proportional gain. Set at the factory.
P010	proportional		Read-Write Attributes: R/W Applicable Mode: ALL
	Gurront loop		
P019	integration	0~500	Current loop proportional gain. Set at the factory.
1015	gain	0~300	Read-Write Attributes: R/W Applicable Mode: ALL
	gain		The larger the value is the faster the servo position
	lst position loop		responses and the more rigid it is. Too large will cause
P020		5~1000	the system to vibrate, so a smaller value should be set.
	proportional	(20)	Unit: 1/s
	gain		Read-Write Attributes: R/W Applicable Mode: P
			The larger the value is, the faster the servo speed
	1st		responses. The heavier the load is, the larger the value
D001	speed loop	10~300	needs to be set. Too large will cause the system to
P021	proportional	(50)	vibrate, so a smaller value should be set.
	gain		Unit: Hz
			Read-Write Attributes: R/W Applicable Mode: P/S
			The smaller the value is, the faster the servo speed
	1st	10~300	responses. Too large value will cause the system to
P022	speed loop	(50)	vibrate, so a larger value should be set.
	integral		Unit: ms
			Read-Write Attributes: R/W Applicable Mode: P/S
P023			The filter stops setting for feedback speed detection.
	lst speed detection filter	0~5 (3)	The larger the block setting is, the stronger the
			filtering effect is, too large will affect the system
			response.
			Kead-Write Attributes : R/W Applicable Mode: ALL

P024	lst torque filtering time constant	0~2500 (3)	Used for filtering of command torque. Unit: ×10us Read-Write Attributes: R/W Applicable Mode: ALL
P025	Speed Feedforword gain	0~1200 (0)	Speed feedforward gain. The higher the value is, the faster the servo responses. Read-Write Attributes: R/W Applicable Mode: P
P026	Speed feedforward filter time constant	0~6400 (3)	Filter for speed feedforward. Unit: ms Read-Write Attributes: R/W Applicable Mode: P
P027	2nd position loop proportional gain	5~1000 (20)	The larger the value is, the faster the servo position responses and the more rigid it is. Too large will cause the system to vibrate, so a smaller value should be set. Unit: 1/s Read-Write Attributes: R/W Applicable Mode: P
P028	2nd speed loop proportional gain	10~300 (50)	The higher the value is, the faster the servo speed responses. The heavier the load is, the larger the value needs to be set. Too large will cause the system to vibrate, so a smaller value should be set. Unit: Hz Read-Write Attributes: R/W Applicable Mode: P/S
P029	2nd speed loop integral gain	10~300 (50)	The smaller the value is, the faster the servo speed responses. Too large value will cause the system to vibrate, so a larger value should be set. Unit: ms Read-Write Attributes: R/W Applicable Mode: P/S
P030	2nd speed detection filter	0~5 (3)	The filter gear setting for feedback speed detection. The larger the gear setting is, the stronger the filter effect, too large will affect the system response. Read-Write Attributes: R/W Applicable Mode: ALL
P031	2nd torque filter time constant	0~2500 (3)	Used for filter of command torque. Unit: ×10us Read-Write Attributes: R/W Applicable Mode: ALL
P032	Inertia ratio	0~10000 (100)	100 times the ratio of load inertia to motor rotor inertia. Unit: % Read-Write Attributes: R/W Applicable Mode: ALL
P033	Factory reserve		
P034	Factory reserve		
P035	Factory reserve		
P036	Factory reserve		
P037	Factory reserve		
P038	Factory reserve		

P039	Factory		
D0.40	Factory		
P040	reserve		
P041	Factory		
	reserve		
P042	reserve		
	Factory		
P043	reserve		
D044	Factory		
P044	reserve		
P045	Factory		
1045	reserve		
P046	Factory		
1010	reserve		
P047	Factory		
	reserve		
P048	Factory		
	reserve		
P049	Digital input DI filter time	ANY (3)	ParameterFilterParameterFilterValuetimeValuetime00.5ms48ms11ms516ms22ms632ms34msOther32msRead-WriteAttributes:R/WApplicable
DOFO	Factory		
P050	reserve		
P051	Factory		
	reserve		
P052	Factory		
	Factory		
P053	reserve		
	Factory		
P054	reserve		
	Factory		
P055	reserve		
DODE	Factory		
F030	reserve		
P057	Factory		
	TODOTAC	1	

P059	Back to the original mode	0~30 (0)	3	Use the negative origin switch to trigger back to the origin position	14	Use positive origin switch + motor Z signal + negative limit signal to trigger back to origin (use Z signal left to the left edge of positive origin switch)
			4	Use the forward origin switch to trigger back to the origin position	15	Use negative origin switch+fixed length to back to origin.
			5	Use motor negative Z signal to trigger back to origin position	16	Use positive origin switch+fixed length to back to origin.
			6	Use motor forward Z signal to trigger back to origin position	17	Use positive origin switch + positive limit signal to trigger back to origin. (Origin is defined as left edge of positive origin switch.)
			7	Use positive origin switch + motor Z signal + positive limit signal to trigger back to origin (Adopt the Z phase signal to the left of the left edge of the positive origin switch)	18	Use positive origin switch + positive limit signal to trigger back to origin (Origin is defined as right edge of positive origin switch.)
			8	Use positive origin switch + motor Z signal + positive limit signal to trigger back to origin (Adopt the Z phase signal to the right of the left edge of the positive origin switch)	19	Use positive origin switch+negative limit signal to trigger back to origin. (Origin is defined as right edge of positive origin switch)

			Use positive origin switch + motor Z signal + positive limit signal to trigger back 0Use positive origin switch+negative limit signal to trigger back to origin. (Origin is defined as left edge of positive origin switch.)9to origin (Adopt the Z phase signal to the left of the right edge of the positive origin switch)20Use positive origin. (Origin is defined as left edge of positive origin switch.)Use positive origin switch + motor Z signal + positive limit signal to trigger back to origin (Adopt the Z phase signal to the right of the right edge of the positive origin switch)Applicable Mode. All		
P060~ P069	Factory reserve				
P070	JOG test running speed	0~300 0 (300)	Set motor rotation in JOG test running mode. Read-Write Attributes: R/W Applicable Mode: ALL		
P071	Communication position selection	0~3 (0)	Choose absolute position or relative position mode.01bit0Absolute positionRelative positionAllow deviation counter cleared and origin position modification.Do not allow deviation counter cleared and command of back to origin position modification.Read-Write Attributes: R/WApplicable Mode: P		

	External input logic level selection	ANY (0)	External input logic level selection.				
P072				0	1		
				Communication	DI enable is needed in		
				enable and DI enable	every mode,		
			bit0	cannot be valid at	communication enable		
				the same time.	is also needed in		
					communication mode.		
			bit2	CCWL signal valid in	CCWL signal valid in		
				low level	high level		
			bit3	CWL signal valid in	CWL signal valid in		
				low level	high level		
			hit5	ZEROSPD signal	ZEROSPD signal valid		
			5110	valid in low level	in high level		
			hit11	ORG signal valid in	ORG signal valid in		
			01011	low level	high level		
			Read-Write Attributes: R/W Applicable Mode: ALL				
	Control order source selection	0~4 (0)	Select control order source.				
P073			Communication mode is from P281, pulse/analog				
			mode is from DI				
			1 From default DI				
			2 From configurable DI				
			3 From P281, limit signal is from DI				
			4 From P281 or configurable DI				
			Read-Wri	te Attributes: R/W	Applicable Mode: ALL		

			Digital input pin function configuration				
	DI reuse function	ANV	Param	bit	Signal	Pin No.	
			D074	bit8~bit15			
P074	configuration5	(0)	F074	bit0~bit7	——		
		(-)	D075	bit8~bit15			
			P075	bit0~bit7			
			D076	bit8~bit15	DI6		
			P070	bit0~bit7	DI1		
			D077	bit8~bit15	DI2		
D075	DI reuse function	ANY		bit0~bit7	DI5		
F075	configuration4	(0)	D070	bit8~bit15	DI4		
			P078	bit0~bit7	DI3		
			Function	configuration:			
			Function		Freesting		
D076			code		FUNCTION		
	DI reuse function configuration3	ANY (0)	0x00	From default	DI		
			0x01	Alarm clear			
F070			0x02	Anticlockwise	travel limit		
			0x03	Clockwise tra	vel limit		
			0x04	0x04 Mode switch			
			0x05	Zero speed clamp			
				Command frequ	Command frequency division; multi		
			0x06	<pre>segment position/speed/torque command</pre>			
	DI nouse function	ANV		start			
P077	DI reuse function	(0)	0x07	Back to origi	n command		
	configurationz	(0)	0x08	Command pulse forbidden; Internal s		ternal speed	
			0.00	command selection 4			
			0x09	Gain selectio	Gain selection		
			0x0A	Deviation cou	nter clear		
			0x0B	Origin switch	signal		
			0x0C	Internal spee	d command sel	ection 1	
5050	DI reuse function	ANY	0x0D	Internal spee	d command sel	ection 2	
P078	configuration1	(0)	0x0E	Internal spee	d command sel	ection 3	
	-		0x0F	Torque limit	selection		
			0x10	Cancel relative position command			
			Read-Writ	e Attributes: R/	/W Applicat	ole Mode: ALL	
P079	Factory reserve						

	Command nulse		Set direction of command pulse and pulse form.						
			P081 P080 Anticlockwise Clockwise						
P080	direction	0~1							
	configuration	(0)							
	*								
	Command pulse								
D001	input mode	1~3							
P081	configuration	(3)							
	*								
			Read-Write Attributes: R/W Applicable Mode: P						
			When the parameter is 1, command pulse forbidden						
	Command pulse input	0~1 (1)	function is blocked; when the parameter is 0, it						
			depends on INH input.						
			Param INH Command pulse						
P082	forbidden		0 valid Input allowed						
	configuration		null Input forbidden						
			1 Input allowed						
			Read-Write Attributes, R/W Applicable Mode D						
	E t - t		Read-Write Attributes: K/W Applicable Mode: P						
P083	Factory								
	Factory								
P084	reserve								
	Factory								
P085	reserve								
	Command pulse								
DOOC	electronic	0~32767							
P080	gear 1^{st}	(1)	Defende to the formula hallow to ensure the last of						
	numerator		Keter to the formula bellow to execute electronic gear						
	Command pulse		Number of pulses needed per rotation X (PO86 or						
P087	electronic	0~32767	P087)/P088=encoder resolution, E.g. For 2500 line						
1.000	gear 2 ^{na}	(1)	incremental encoder, the resolution is 10000, when set						
	numerator		P086=4, P088=1, command pulses needed for 1r is: 2500.						
	Command pulse	1 00707	Read-Write Attributes: R/W Applicable Mode: P						
P088	electronic	1~32767							
	gear								
	Command pulse								
PUSO	smoothing	0~7	Command pulse delay filter gear selection.						
1000	filter	(1)	Read-Write Attributes: R/W Applicable Mode: P						

P090	Set positive direction of motor rotation in communication control mode★	0~1 (0)	Set positive direction of motor rotation.0Facing motor shaft, anticlockwise is positive.1Facing motor shaft, clockwise is positive.Read-Write Attributes: R/WApplicable Mode: ALL
P091	Input mode of deviation counter clear	0~2 (1)	Function configuration of deviation counter clearsignal0Valid in high level1Valid in rising edge2Block deviation counter clear signalRead-Write Attributes: R/WApplicable Mode: P
P092	Analog voltage- command speed coefficient	10~20000 (500)	rpm speed corresponding to 1V voltage Unit: rpm/V Read-Write Attributes: R/W Applicable Mode: S
P093	Analog voltage- command speed direction	0~1 (0)	Set rotation direction corresponding to positive/negative voltage. 0 Positive->Anticlockwise 1 Positive->Clockwise Read-Write Attributes: R/W Applicable Mode: S
P094	Analog input zero drift compensation	-2047~2047 (0)	Zero drift compensation of analog speed command or analog torque command. Read-Write Attributes: R/W Applicable Mode: S/T
P095	1 st internal speed	-3000~3000 (0)	1 st internal speed Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P096	2 nd internal speed	-3000~3000 (0)	2 nd internal speed Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P097	3 rd internal speed	-3000~3000 (500)	3 rd internal speed Unit: rpm Max speed limit in communication position mode Read-Write Attributes: R/W Applicable Mode: P/S
P098	4 th internal speed	-3000~3000 (500)	4 th internal speed Unit: rpm Max speed limit in torque mode Read-Write Attributes: R/W Applicable Mode: S/T
P099	5 th internal speed	-3000~3000 (0)	5 th internal speed Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P100	6 th internal speed	-3000~3000 (0)	6 th internal speed Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P101	7 th internal speed	-3000~3000 (0)	7 th internal speed Unit: rpm Used as return speed during back to origin. Read-Write Attributes: R/W Applicable Mode: ALL
P102	8 th internal speed	-3000~3000 (100)	8 th internal speed Unit: rpm Used as crawling speed during back to origin. Read-Write Attributes: R/W Applicable Mode: ALL
P103 ~ P111	Factory reserve		

P112	Analog command filter time	0~6400 (1000)	Analog speed/torque command delay filter time Unit×20us Read-Write Attributes: R/W Applicable Mode: S/T
P113	Motor acceleration time	0~10000 (120)	Acceleration time and deceleration time of servo motor. Unit: ms/1000rpm
P114	Motor deceleration time	0~10000 (120)	P113 : Time from x(rpm) to (x+1000)rpm P114 : Time from x(rpm) to (x-1000)rpm Read-Write Attributes: R/W Applicable Mode: ALL
P115	Command pulse max speed limit	0~1 (0)	Source of max speed limit in pulse position mode. Pulse frequency 0 defines rotation speed 1 P98 is the max limit speed Read-Write Attributes: R/W Applicable Mode: P
P116	Factory reserve		
P117	Factory reserve		
P118	Factory reserve		
P119	Communication torque limit1	0~3000 (2000)	The max torque that servo motor outputs.1000 indicates 1000‰, i.e. the motor can output ±1 rated torque. The rated torque of motor is introduced in motor specification. Unit: ‰ Read-Write Attributes: R/W Applicable Mode: ALL
P120	Communication torque limit2	0~3000 (2000)	
P121	Set locating completed range	0~32767 (5)	When the absolute value of difference between feedback position of motor encoder and command position is smaller than this parameter, locating completed output signal is valid. Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P122	Set zero speed detection range	10~20000 (10)	When the absolute value of motor feedback speed is smaller than this parameter, the zero speed output signal is valid. Unit: rpm Read-Write Attributes: R/W Applicable Mode: ALL
P123	Arriving speed	10~20000 (10)	When the absolute value of motor feedback speed equals or is larger than this parameter, arriving speed output signal is valid. Unit: rpm Read-Write Attributes: R/W Applicable Mode: ALL

				Condition of locating completed output signal When position deviation is within					
			0		locating completed range, output				
					is valid.		1 1		
	Condition of				nen there is	eviation is w	ithin		
	locating	0~2	1		ocating com	oleted range, outr	out is		
P124	completed	(0)		Va	alid.				
	output			Wł	nen there i	s no position com	mand,		
	Signai			Ze	ero speed de	etection signal is	valid		
			2	aı	nd position	n deviation is w	ithin		
				10	ocating comp	pleted range, outp	outis		
			Road	Ve	alla.	c. P/W Applicab	la Mada, P		
	Factory		Neau	Read-write Attributes: K/W Applicable Mode:					
P125	reserve								
			Spec	ific a	action of t	he driver and moto	or after the		
	Specific	0~1	trav	el lim	limit signal is valid.				
					During	After stop	Deviation		
				aec Tora	eleration	rotating	counter		
			0	TOLA	travel	limit is 0	Hold		
					Contr	rol mode			
D196	action of				Position command from		Clear		
1120	travel	(1)		р	direction	of travel limit is	before		
	limit★				0		decelerat		
						Speed commond	101		
					Position	from direction			
				S/T	command	of travel limit			
					is 0	is O			
			Read	-Write	e Attribute	s: R/W Applicab	ole Mode: ALL		
P127	Factory								
	reserve								
	Define fixed		When	back	to origin mo	de P059 is set as 15	5/16, it needs		
P128	position	$-2^{31}\sim 2^{31}$		to mod	lify this p	arameter.			
1120	during back	- 1	Unit	: puls	ses	5/111 1 1			
	to origin		Read	-Writ€	e Attribute	s: K/W Applicab	ole Mode: ALL		
P130	Factory								
	reserve								
P131	Factory								
	reserve								

			Set braking strategy of servo system.					
			Use internal braking resistance and					
			alarm when the baking rate is too high.					
			Use external braking resistance and					
DIOO	Braking	0~3	alarm when the baking rate is too high					
P132	setting★	(0)	Use external braking resistance and do					
			2 not alarm when the baking rate is too high					
			Use internal capacity to store braking					
			energy.					
			Read-Write Attributes: R/W Applicable Mode: ALL					
			Use internal default when set as 0. Refer to section					
	Dischange		4.5 for the max and min values. (Table of under-voltage					
D122			node, discharge voltage node and over-voltage node					
1155	sotting +	(0)	under different voltage level in servo system)					
	Setting 🗮		Unit: V					
			Read-Write Attributes: R/W Applicable Mode: ALL					
			Use internal default when set as 0. Refer to section4.5					
			for the max and min values . (Table of under-voltage					
P134	Under-voltage	(0)	node, discharge voltage node and over-voltage node					
	setting★		under different voltage level in servo system)					
			Unit: V					
			Read-Write Attributes: R/W Applicable Mode: ALL					
			Use Internal default when set as 0. Refer to section 4.5					
	Over-voltage		node discharge voltage node and over-voltage node					
P135		(0)	under different voltage lovel in serve system)					
	Setting 🛪	(0)	Unit. V					
			Read-Write Attributes: R/W Applicable Mode: ALL					
			Set detection threshold of alarm for large position					
D100	Position	0~32767	deviation. When set as 0, position deviation alarm is					
P136	deviation	(25000)	blocked. Unit: ×256pulses					
	limit value		Read-Write Attributes: R/W Applicable Mode: P					
	A		Set limit value of analog voltage and alarm will be					
D197	Analog	0~100	triggered if actual value is larger than it. When set					
1157	valuo	(0)	as 0, the alarm is blocked. Unit: $ imes 0.1 V$					
	value		Read-Write Attributes: R/W Applicable Mode: S/T					
	Over-load	0~2000	Set starting torque before the servo calculates					
P138	level	(1050)	overload. Unit: rated torque‰					
	10,01	(1000)	Read-Write Attributes: R/W Applicable Mode: ALL					
		0.00000	Set over-speed threshold of motor. When set as 0, the					
P139	Over-speed	0~20000	over-speed threshold is 1.2 times of rated revolution.					
	level	(0)	Unit: rpm					
D140			<pre>kead-write Attributes: K/W Applicable Mode: ALL</pre>					
P140	Alarm history	ANY	Record the latest 10 alarms. Code shown in P202.					
~ P149	ATALM HISTORY	(0)	Read-Write Attributes: R Applicable Mode: ALL					
P150								
~	Factory							
P179	reserve							

P180	Software version	ANY	Software version of the servo Read-Write Attributes: R Applicable Mode: ALL
P181	Motor model	ANY	Type of motor. E.g: motor model 1006, 10 indicates that it fits 10A driver; 06 represents P182 motor code. More details are in section4.5. Read-Write Attributes: R Applicable Mode: ALL
P182	Motor code	1-100	Code of servo motor. Details about configuration of motor code are in section 4.5. Read-Write Attributes: R/W Applicable Mode: ALL
P183~ P199	Factory reserve		
P200	Servo system state machine	ANY	Servo system state machine of gateParamState machine1Servo initial state3Servo running4Servo prepared5Servo alarm (for specific refer to P202)Read-Write Attributes: R
P201	Servo control mode	ANY	Current control mode of servoParamCurrent mode0x0000No control0x0001Pulse position0x0002Analog speed mode0x0004Analog torque mode0x0101Communication position0x0102Communication speed0x0104Communication torqueRead-Write Attributes: RApplicable Mode: ALL
P202	Servo alarm state	ANY	Current alarm state of servoParamServo alarm state0None1Under voltage2Over voltage3Over current4Over heat6Encoder alarm8Overload9Excessive position deviation10Travel limit11Over speed12Analog over-limit13EEPROM faulty in read and write15CAN communication faultyRead-Write Attributes: R

			Status o	of external contro	ol signal	
					Status bit is	Status bit
			Control signal	0	is 1	
			bit0	Servo enable	null	null
			bit1	Alarm clear	null	valid
			bit2	Anticlockwise travel limit	null	valid
			bit3	Clockwise travel limit	null	valid
			bit4	Mode switch	Mode 1	Mode 2
			bit5	Zero speed clamp	null	valid
		ANY	bit6	Command frequency division selection; multi segment position/speed/ torque start signal	l st frequency division; signal null	2 nd frequency division; signal valid
			bit7	Back to origin	null	valid
P203	External order status		bit8	Command pulse forbidden; internal command selection 4	null	valid
			bit9	Gain selection	1 st gain	2 nd gain
			bit10	Deviation counter clear; speed direction selection	null	valid
			bit11	Origin switch signal	null	valid
			bit12	Internal command selection 1	null	valid
			bit13	Internal command selection 2	null	valid
			bit14	Internal command selection 3	null	valid
			bit15	Torque limit	Torque	Torque
				selection	limit l	limit 2
			Kead-Wr:	ite Attributes: R	Applicable	Mode: ALL

			Servo out	tnut status When	the relative	hit is 1 the
			stati	us is true		bit is i, the
			Stat	Sorvo output	Status hit	Status hit
				status	is 0	is 1
			hit0	Servo prepared	Falso	True
			hit1	Servo alarm	False	True
			DIU		14150	IIue
			bit2	completed	False	True
	Servo		bit3	Braking release	False	True
P204	output	ANY	bit4	Zero speed	False	True
	status		bit5	In torque limit	False	True
			1	Speed	D 1	
			bitb	consistency	False	Irue
			1.1.47	Resistance	F -1	Т
			DIU	breaking	Faise	Irue
			bit8	Speed arriving	False	True
			bit9	Overload alarm	False	True
			bit10	Back to origin	False	True
			Read-Wri	te Attributes: R	Applicable	e Mode: ALL
			State of	servo digital DI i	nput signal.	When relative
	Digital input DI state	tal DI ANY te	pins a	re on, correspondi	ng bit is 1.	
			bit0	SRV_ON		
			bit1	ALM_CLR		
DOOF			bit2	DI1		
P205			bit3	DI2		
			bit4	DI3		
			bit5	DI4		
			bit6	DI5		
			Read-Wri	te Attributes: R	Applicable	e Mode: ALL
			State of	servo digital DO	output signa	al. When
			correspon	nding bit is 1, re	lative pins	are on.
			bit0	DO1		
	Digital		bit1	DO2		
P206	output DO	ANY	bit2	DO3		
	state		bit3	DO4		
			bit4	DO5		
			bit5	D06		
			Read-Wri	te Attributes: R	Applicable	e Mode: ALL
			Command s	speed as analog spe	ed mode, or	command torque
D907	Analog	ANIV	as as	nalog torque mode.		
P207	input 1	ANY	$\pm 10V$ cos	rresponds ± 32767		
			Read-Wri	te Attributes: R	Applicable	e Mode: S/T
	Analog		Torque 1	imit as analog mod	e	
P208	input 2	ANY	$\pm 10V$ cos	rresponds ± 32767		
	Input 2		Read-Wri	te Attributes: R	Applicable	e Mode: ALL
P200	Factory					
1205	reserve					
P210	Analog	ANY	Analog o	utput 1		
1210	output 1	11111	Read-Wri	te Attributes: R	Applicable	e Mode: ALL

P211	Analog	ANY	Analog output 2 Read-Write Attributes, R. Applicable Mode, ALL						
	Command	2 31, 2 31	Command position Unit, pulses						
P212	position	$-2 \sim 2$ -1	Read-Write Attributes: R Applicable Mode: P						
DO1C	User	$-2^{31}\sim 2^{31}$	User position coordinate Unit: pulses						
P216	position	- 1	Read-Write Attributes: R Applicable Mode: P						
0910	Position	$-2^{31}\sim 2^{31}$	Position deviation Unit: pulses						
P210	deviation	- 1	Read-Write Attributes: R Applicable Mode: P						
P220	Command	-6000~60	Command speed Unit: rpm						
1220	speed	00	Read-Write Attributes: R Applicable Mode: S						
P221	Feedback	-6000~	Feedback speed Unit: rpm						
1221	speed	6000	Read-Write Attributes: R Applicable Mode: ALL						
P222	Speed	-6000~	Speed deviation Unit: rpm						
	deviation	6000	Read-Write Attributes: R Applicable Mode: S						
P223	Command	-3500~	Command torque Unit: ‰						
	torque	3500	Read-Write Attributes: R Applicable Mode: T						
P224	Feedback	-3500~	Feedback torque Unit: %						
	torque	3500	Read-Write Attributes: R Applicable Mode: ALL						
P225	lorque	-3500~	Torque deviation Unit: %						
	deviation	3500	Kead-Write Attributes: K Applicable Mode: T						
P226		ANY	Busbar voltage Unit: V						
	Vortage		Temperature of the driver Unit %						
P227	driver	ANY	Read-Write Attributes, R. Applicable Mode. All						
P228	diivei		Neau "TITE ATTIDUTES: N Applicable Mode: ALL						
~	Factory								
P234	reserve								
			Reason for non-rotation of motor						
			Reason Reason						
			0 Speed command is						
			too small						
			1 Main power is off 12 Torque command is						
			too small						
			2 no servo enable 13 Speed limit is too						
	Reason for		small						
P235	non-rotation	ANY	Overload/wrong						
	of motor		3 Travel limit 14 connection of power						
			line line						
			4 Iorque limit is 15 Servo alarm						
			Loo small Noton nomen line is						
			7 rostition command 17 motor power line is						
			9 Zaro speed clamp						
			Read-Write Attributes, R Applicable Mode, AU						
P236									
~	Factory								
0070	reserve								

			Communicati	on function cod	e, to execu	te following	
P280 Commu		ANY	Function code	Action	Function code	Action	
			0x0101	Reset factory settings	0x1001	Position sinusoidal response	
				0x0102	All param write EEPROM	0x1002	Speed sinusoidal response
	Communication function code		0x0104	Updated param write EEPROM	0x1004	Torque sinusoidal response	
			0x0202	JOG start	0x2001	Position step response	
				0x0203	JOG motor rotates anticlockwise	0x2002	Speed step response
			0x0204	JOG motor rotates clockwise	0x2004	Torque step response	
			0x0205	JOG stop			
			Read-Write	Attributes: R/W	Applica	ble Mode: ALL	

			Communication control word 1. Operate by bit to execute					
			follow	ving control:		1		
				Aim funct:	ion	0	1	
			bit0	P016=1 anti-6	enable	null	valid	
			bit4	Mode swit	ch	Mode 1	1 Mode 2	
				Zero spec	ed			
			bit5	clamp/posi	tion	null	valid	
				locked				
				Command freq	uency	P086	P087	
				division sele	ection	1000	1007	
			bit6	Multi segm	nent			
				position/spec	ed/tor	null	valid	
				que star	rt			
			1.1.47	Back to or:	igin		1 - 1	
			DIU	order		null	valla	
				Command pu	lse	11	1 • 1	
			1	forbidde	n	null	valid	
P281	Communication	ANY	b1t8	Internal con	mmand	11	1 • 1	
control word 1			selection	4	null	valid		
			bit9	Gain selec	tion	1 st gai	n 2 nd gain	
				Deviation co	unter	11	1.1	
			1	clear	clear		valid	
			b1t10	Speed direction				
				selectio	n			
				Origin switch				
			bit11	signal		null	valid	
				Internal command				
			bit12	selection 1		null	valid	
				Internal command				
			bit13	selection 2		null	valid	
				Internal command				
			bit14	selection 3		nu11	valid	
				Torque li	mit			
			bit15	selectio	m	Limit	1 Limit 2	
			Read-Wri	te Attributes:	R/W	Applica	able Mode: ALL	
			Communic	eation control w	ord 2. (Operate h	v hit to execute	
			followir	g control:	014 2.	operates	j bit to checate	
				0		1		
				Servo	Se	rvo		
	Communication		bit0	anti-enable	ena	hle		
P282	control word 2	ANY	hit1	(auto reset)	Alarm	clear		
			5101	(4400 10500)	Rela	tive		
			hit2	(auto reset)	nosi	tion		
			5102			nd		
			Read-Wri	te Attributes:	R/W	Applica	able Mode: ALL	
	Communication		C			11		
P283	Lommunication	ANY	Lommunic	ation status w	ord	A. 1.	-1.1. M. 1. ATT	
	status word		Kead-Wri	te Attributes:	K/W	Applica	ible Mode: ALL	

P284	Factory		
~ P289	reserve		
P290	Communication position command O	$-2^{31} \sim 2^{31}$ - 1	Communication position command 0 (When PO05 is set as 0, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P292	Communication position command 1	$-2^{31} \sim 2^{31}$ - 1	Communication position command 1 (When PO05 is set as 1, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P294	Communication position command 2	$-2^{31} \sim 2^{31}$ - 1	Communication position command 2 (When PO05 is set as 2, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P296	Communication position command 3	$-2^{31} \sim 2^{31}$ - 1	Communication position command 3 (When PO05 is set as 3, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P298	Communication position command 4	$-2^{31} \sim 2^{31}$ - 1	Communication position command 4 (When PO05 is set as 4, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P300	Communication position command 5	$-2^{31} \sim 2^{31}$ - 1	Communication position command 5 (When PO05 is set as 5, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P302	Communication position command 6	$-2^{31} \sim 2^{31}$ - 1	Communication position command 6 (When PO05 is set as 6, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P304	Communication position command 7	$-2^{31} \sim 2^{31}$ - 1	Communication position command 7 (When PO05 is set as 7, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P306	Communication position command 8	$-2^{31} \sim 2^{31}$ - 1	Communication position command 8 (When PO05 is set as 8, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P308	Communication position command 9	$-2^{31} \sim 2^{31}$ - 1	Communication position command 9 (When PO05 is set as 9, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P310	Communication position command 10	$-2^{31} \sim 2^{31}$ - 1	Communication position command 10 (When PO05 is set as 10, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P

P312	Communication position command 11	$-2^{31} \sim 2^{31}$ - 1	Communication position command 11 (When PO05 is set as 11, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P314	Communication position command 12	$-2^{31} \sim 2^{31}$ - 1	Communication position command 12 (When PO05 is set as 12, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P316	Communication position command 13	$-2^{31} \sim 2^{31}$ - 1	Communication position command 13 (When PO05 is set as 13, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P318	Communication position command 14	$-2^{31} \sim 2^{31}$ - 1	Communication position command 14 (When PO05 is set as 14, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: P
P320	Communication position command 15	$-2^{31} \sim 2^{31}$ - 1	Communication position command 15 (When PO05 is set as 15, use the value as communication position command) Unit: pulses Read-Write Attributes: R/W Applicable Mode: p
P322	Factory reserve		
P323	Factory reserve		
P324	Communication speed command 0	-6000~ 6000	Communication speed command 0 (When PO05 is set as 0, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P325	Communication speed command 1	-6000~ 6000	Communication speed command 1 (When PO05 is set as 1, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P326	Communication speed command 2	-6000~ 6000	Communication speed command 2 (When PO05 is set as 2, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P327	Communication speed command 3	-6000~ 6000	Communication speed command 3 (When PO05 is set as 3, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P328	Communication speed command 4	-6000~ 6000	Communication speed command 4 (When PO05 is set as 4, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P329	Communication speed command 5	-6000~ 6000	Communication speed command 5 (When PO05 is set as 5, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S

P330	Communication speed command 6	-6000~ 6000	Communication speed command 6 (When PO05 is set as 6, use the value as communication speed command) Unit: rpm
P331	Communication speed command 7	-6000~ 6000	Read-Write Attributes: R/W Applicable Mode: S Communication speed command 7 (When PO05 is set as 7, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P332	Communication speed command 8	-6000~ 6000	Communication speed command 8 (When PO05 is set as 8, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P333	Communication speed command 9	-6000~ 6000	Communication speed command 9 (When PO05 is set as 9, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P334	Communication speed command 10	-6000~ 6000	Communication speed command 10 (When PO05 is set as 10, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P335	Communication speed command 11	-6000~ 6000	Communication speed command 11 (When PO05 is set as 11, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P336	Communication speed command 12	-6000~ 6000	Communication speed command 12 (When PO05 is set as 12, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P337	Communication speed command 13	-6000~ 6000	Communication speed command 13 (When PO05 is set as 13, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P338	Communication speed command 14	-6000~ 6000	Communication speed command 14 (When PO05 is set as 14, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P339	Communication speed command 15	-6000~ 6000	Communication speed command 15 (When PO05 is set as 15, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P340	Communication speed command 16	-6000~ 6000	Communication speed command 16 (When PO05 is set as 16, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P341	Communication speed command 17	-6000~ 6000	Communication speed command 17 (When PO05 is set as 17, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S

P342	Communication speed command	-6000~	Communication speed command 18 (When PO05 is set as 18, use the value as communication speed command)
	18	0000	Read-Write Attributes: R/W Applicable Mode: S
P343	Communication speed command 19	-6000~ 6000	Communication speed command 19 (When PO05 is set as 19, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P344	Communication speed command 20	-6000~ 6000	Communication speed command 20 (When PO05 is set as 20, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P345	Communication speed command 21	-6000~ 6000	Communication speed command 21 (When PO05 is set as 21, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P346	Communication speed command 22	-6000~ 6000	Communication speed command 22 (When POO5 is set as 22, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P347	Communication speed command 23	-6000~ 6000	Communication speed command 23 (When PO05 is set as 23, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P348	Communication speed command 24	-6000~ 6000	Communication speed command 24 (When PO05 is set as 24, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P349	Communication speed command 25	-6000~ 6000	Communication speed command 25 (When PO05 is set as 25, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P350	Communication speed command 26	-6000~ 6000	Communication speed command 26 (When PO05 is set as 26, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P351	Communication speed command 27	-6000~ 6000	Communication speed command 27 (When PO05 is set as 27, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P352	Communication speed command 28	-6000~ 6000	Communication speed command 28 (When PO05 is set as 28, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P353	Communication speed command 29	-6000~ 6000	Communication speed command 29 (When PO05 is set as 29, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S

P354	Communication speed command 30	-6000~ 6000	Communication speed command 30 (When PO05 is set as 30, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P355	Communication speed command 31	-6000~ 6000	Communication speed command 31 (When PO05 is set as 31, use the value as communication speed command) Unit: rpm Read-Write Attributes: R/W Applicable Mode: S
P356	Factory reserve		
P357	Factory reserve		
P358	Communication torque command 0	-3500~ 3500	Communication torque command O(When POO5 is set as 0, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P359	Communication torque command 1	-3500~ 3500	Communication torque command 1 (When PO05 is set as 1, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P360	Communication torque command 2	-3500~ 3500	Communication torque command 2(When PO05 is set as 2, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P361	Communication torque command 3	-3500~ 3500	Communication torque command 3(When PO05 is set as 3, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P362	Communication torque command 4	-3500~ 3500	Communication torque command 4(When PO05 is set as 4, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P363	Communication torque command 5	-3500~ 3500	Communication torque command 5(When PO05 is set as 5, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P364	Communication torque command 6	-3500~ 3500	Communication torque command 6(When PO05 is set as 6, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P365	Communication torque command 7	-3500~ 3500	Communication torque command 7(When PO05 is set as 7, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P366	Communication torque command 8	-3500~ 3500	Communication torque command 8(When PO05 is set as 8, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T

P367	Communication torque command 9	-3500~ 3500	Communication torque command 9(When PO05 is set as 9, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P368	Communication torque command 10	-3500~ 3500	Communication torque command 10(When PO05 is set as 10, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P369	Communication torque command 11	-3500~ 3500	Communication torque command 11(When PO05 is set as 11, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P370	Communication torque command 12	-3500~ 3500	Communication torque command 12(When P005 is set as 12, use the value as torque command)Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P371	Communication torque command 13	-3500~ 3500	Communication torque command 13(When P005 is set as 13, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P372	Communication torque command 14	-3500~ 3500	Communication torque command 14(When PO05 is set as 14, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P373	Communication torque command 15	-3500~ 3500	Communication torque command 15(When PO05 is set as 15, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P374	Communication torque command 16	-3500~ 3500	Communication torque command 16(When PO05 is set as 16, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P375	Communication torque command 17	-3500~ 3500	Communication torque command 17(When PO05 is set as 17, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P376	Communication torque command 18	-3500~ 3500	Communication torque command 18(When PO05 is set as 18, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P377	Communication torque command 19	-3500~ 3500	Communication torque command 19(When PO05 is set as 19, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P378	Communication torque command 20	-3500~ 3500	Communication torque command 20(When PO05 is set as 20, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P379	Communication torque command 21	-3500~ 3500	Communication torque command 21 (When PO05 is set as 21, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T

P380	Communication torque command 22	-3500~ 3500	Communication torque command 22(When P005 is set as 22, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P381	Communication torque command 23	-3500~ 3500	Communication torque command 23(When PO05 is set as 23, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P382	Communication torque command 24	-3500~ 3500	Communication torque command 24(When PO05 is set as 24, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P383	Communication torque command 25	-3500~ 3500	Communication torque command 25(When POO5 is set as 25, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P384	Communication torque command 26	-3500~ 3500	Communication torque command 26(When PO05 is set as 26, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P385	Communication torque command 27	-3500~ 3500	Communication torque command 27(When P005 is set as 27, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P386	Communication torque command 28	-3500~ 3500	Communication torque command 28(When POO5 is set as 28, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P388	Communication torque command 30	-3500~ 3500	Communication torque command 30(When PO05 is set as 30, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T
P389	Communication torque command 31	-3500~ 3500	Communication torque command 31 (When POO5 is set as 31, use the value as torque command) Unit: ‰ Read-Write Attributes: R/W Applicable Mode: T

- ★ in parameter list means it needs to be reserved in EEPROM after written in driver. Effective after power on again. Other parameters are effective immediately after modified but may be lost after power off. Please reserve in EEPROM if needed.
- (2) Default parameters in the table corresponds P182=3, i.e. 24v/200w/2500ppr servo motor.
- (3) All parameters fit standard modbus protocol.

4.2 Modbus RTU Protocol

Modbus RTU defines "bit" in serial transmission information area of bus, and way to package and decode information. In Modbus mode, every byte(1Byte=8bit) is represented by 2 hexadecimal characters $(0 \sim F)$. Information must be transferred continuously. Complete information frame contains slave address, function code, data area and error check.

- Slave address: Signified by 1 byte. Valid slave machine address range is 0-247, and addressing range is 1-247. Host machine sends slave address into address area of information frame and starts locating in slave machine. The slave puts own address in address area of reply to let the host identify slave address that has responded. Address 0 is for broadcast, which can be identified by all slaves.
- Function code: Signified by 1 byte. Function code is used to describe actions to be operated to slave machine when the host sends message to the slave. When the slave responds properly, the function code turns to original code. If not, change the most significant bit of original function code to "1" and return.
- Data area: The length and contents of data area differ according to function code. It contains (beginning) register address to be accessed, data length to be read, data to be written and so on. Notice that significant bit is in the front.
- **Error check:** Signified by 2 bytes. The first byte is the high 8 bits of cyclic redundancy check CRC16. There will be no details about CRC16. Please search online if you are interested about it. Notice: parity check is for single byte information while CRC is for the whole information frame.

4.2.1 Function Code 16#03: Read Register

Read register has no broadcast function. It only fits one designated slave address. Values of one or serial registers can be read.

The example shows how to read values of two serial registers P212 and P213 in No.2 slave machine.

Slave address	Function code	Beginning register address high 8 bits	Beginning register address low 8 bits	Read register number high 8 bits	Read register number low 8 bits	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	2Bytes		2By	tes	2By	tes
16#02	16#03	16#00	16#D4	16#00	16#02	16#84	16#00

Host request frame:

Slave response frame:

Slave address	Function code	Length of read data	Register 1 data high 8 bits	Register 1 data 1ow 8 bits	Register 2 data high 8 bits	Register 2 data 1ow 8 bits	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	1Byte	2Bytes		2By	2Bytes		tes
16#02	16#03	16#04	16#01	16#F4	16#03	16#E8	16#89	16#83

According to response fraction, the value of P212 is 16#01F4, that is 500, value of P213 is 16#03E8, that is 1000.

4.2.2 Function Code 16#06: Write Single Register

Write single registers support broadcasting and each command can only write one register. The following example is to write the value of P325 register from No.1 slave as 1000.

Slave address	Function code	Write register address high 8 bits	Write register address low 8 bits	Write data high 8 bits	Write data low 8 bits	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	2Bytes		2By	tes	2By	tes
16#01	16#06	16#01	16#45	16#03	16#E8	16#99	16#5D

Host request frame:

Slave response frame:

Slave address	Function code	Write register address high 8 bits	Write register address low 8 bits	Write data high 8 bits	Write data low 8 bits	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	2Bytes		2By	tes	2By	tes
16#01	16#06	16#01	16#45	16#03	16#E8	16#99	16#5D

According to response fraction, the slave writes successfully when a fraction of data is sent back unchanged.

4.2.3 Function Code 16#10: Write Serial Registers

Write serial registers support broadcasting and each command can write one or several registers. The following example is to write the value of P325 as 1000 and value of P326 as 2000 through 16#10 function code.

	Host reque	est frame:						
Slave address	Function code	Beginning register address high 8 bits	Beginning register address low 8 bits	Write register number high 8 bits	Write register number low 8 bits	Write data overall length	Write register 1 data high 8 bits	Write register 1 data low 8 bits
1Byte	1Byte	2Bytes		2By	tes	1Byte	2By	tes
16#01	16#10	16#01	16#45	16#00	16#02	16#04	16#03	16#E8

Write register 2 data high 8 bits	Write register 2 data low 8 bits	CRC check high 8 bits	CRC check low 8 bits
2Bytes	3	2	Bytes
16#07	16#D0	16#B9	16#EC

Slave address	Function code	Beginning register address high 8 bits	Beginning register address low 8 bits	Write register number high 8 bits	Write register number low 8 bits	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	2Bytes		2By	tes	2By	tes
16#01	16#10	16#01	16#45	16#00	16#02	16#51	16#E1

Slave response frame:

4.2.4 No Response and Abnormal Response

After the host sends Modbus request frame, the slave may have two abnormal types of response, which is no response on time and abnormal response in fixed time.

When the host judges that no response comes from the slave after certain time check, it needs to check communication wiring, slave status lamp and whether the environment around is suitable for communication.

The common reason of abnormal response of slave is data frame error, such as writing data into a read only register or that data written is out of range.

Slave address	Function code	Write register address high 8 bits	Write register address low 8 bits	Write data high 8 bits	Write data low 8 bits	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	2Bytes		2By	tes	2By	tes
16#01	16#06	16#01	16#45	16#27	16#10	16#99	16#5D

Example of abnormal response Host request frame:

Slave request frame:

Slave address	Function code	Error code	CRC check high 8 bits	CRC check low 8 bits
1Byte	1Byte	1Byte	2Bytes	
16#01	16#86	16#02	16#C3	16#A1

Abnormal response error code description:

Error code	Description
16#02	Wrong read-write attributes of register; Wrong parameter range.
16#03	Wrong register address.
16#06	The slave is busy.

4.3 CANopen Communication Protocol

CANopen communication protocol is developed from CAL (CAN Application Layer) by the organization CiA(CAN-in-Automation), based in Nuremberg in Germany, in late 1990s. The CiA keeps introducing equipment sub-protocol to many different industries on the basis of CANopen basic protocol——CiA DS 301(DS:Draft Standard) and makes it developed and spread faster. The sub-protocol used in motor driving and action control industry is CiA DSP 402(DSP:Draft Standard Proposal) Note: CiA DS 301 will be abbreviated as CiA301 and CiA DSP 402 will be abbreviated as CiA402.

CANopen is defined as real time communication of small network and control signal, the features of which are listed below:

- (1) Message transmission uses the form of CAN standard frame, i.e., 11-bit ID domain to reduce transmission time;
- (2) Network control message adopts data minimum byte number, such as heartbeat message which contains only one byte;
- (3) Process data of real-time update (PDO) dose not need message response from receiver, which means adopting production-consumption model to reduce load of bus;;
- (4) Configuration parameters, needing confirmation from receiver, are commonly transferred by fast single word transmission (Fast SDO), which means a message transmits a 32-bit data at most, avoiding real-time reduction caused by framing.

All definitions above are for saving time and expenses as well as promising real time ability to the best. In order to cut down workload of simple network, CANopen defines forced default identifier (CAN-ID) distribution list to simplify the study process for users and maintainers.

4.3.1 CANopen Specification

 $\ensuremath{\mathsf{SSTS1A}}\xspace$ supports CiA402 protocol. The concrete specifications is listed below.

Data link layer	CAN2.OA 11-bit CAN-ID
Application layer	CANopen CiA DS301/CiA DSP402
Baud rate	1Mbps(default),800kbps,500kbps,250kbps,125kbps,50kbps,20kbps
Max station number	127
CAN frame length	0~8Bytes
Termination resistor	120 Ω
Service supported	NMT: Network management (node status, heartbeat, node protection) SDO: Object of service data PDO: Object of process data SYNC: Synchronization
SDO transmission type	Fast SDO transmission
PDO transmission type	Time trigger, event trigger, synchronous trigger
PDO number supported	$4 \times \text{RPDO}, 4 \times \text{TPDO}$
Servo	Profile position mode Profile velocity mode Profile torque mode
Servo running mode	Homing mode Cyclic synchronous position mode Cyclic synchronous velocity mode Cyclic synchronous torque mode

4.3.2 CAN Wiring

There is no special rules for CAN bus physical layer, so that multiple physical medium are allowed to use such as twisted pair and optical fibre. The twisted pair is the most common. Two signal lines are called CAN_H and CAN_L and execute transmission with differential voltage (mainly bus transceiver). The voltage of signal lines is about 2.5V in free time, and this state is called logic 1 or recessive position. Logic 0 is shown by making CAN_H higher than CAN_L and called dominant position. The voltage values are CAN_H=3.5V and CAN_L=1.5V in logic 0, and dominant position has priority while competing.

SSTS1A servo driver adopts RJ45 ports and twisted pair. The concrete definitions are introduced in 3.2.2. The connection between upper computer and servo, as well as between servos, is bus series connection, that is to connect CAN_H with CAN_H and connect CAN_L with CAN_L. It needs to connect a terminal resistor of $120 \,\Omega$ between main station and the last slave station. Turn the dial switch to ON in servo end to activate internal $120 \,\Omega$ resistance. Use twisted pair with shielding layer as communication cable and ensure it well-grounded (In short-distance communication, the GND earth wire of CN2 and CN3 can be disconnected, but ground connection is suggested in long-distance and high-BPS communication).

Connection between baud rate and communication distance

P11=1	1Mbps	25m
P11=2	800kbps	50m
P11=3	500kbps	100m
P11=4	250kbps	250m
P11=5	125kbps	500m
P11=6	50kbps	1000m
P11=7	20kbps	2500m

4.3.3 CANopen Communication Network Configuration

4.3.3.1 EDS file

EDS (short for Electronic Data Sheet) file is the marker file or similar code of slave station connected with PLC, which can be used to identify the type of the slave (which similar in 401、402 and 403 or which device in 402). The file contains all information of slave station, including parameters of manufacturer, serial code, software version, baud rate supported, object dictionary able of mapping and its properties. So it needs to import the EDS file of slave servo to upper configuration software before configuring hardware.

← 📴 Import EDS File	
Choose operation you want	
You want to	
● Install EDS File	
Confinstall EDS File	
	Next Cancel

4.3.3.2 OD

CANopen OD (short for Object Dictionary) is the core concept of CANopen protocol. OD is an organized object group that describes all parameters of the comparable CANopen node including storage position of communication data. The table is called EDS file when it can be transmitted. The design of OD is based on CiA402 standard and each object has exact function definition. Objects here are similar to memory addresses. Some objects, such as speed and position, can be modified by external controller, but some of them only can be modified by the driver like status and error information. Every object uses a 16-bit value for addressing, which is called index and the range is 0x0000~0xFFFF. To avoid situation that no index is available when there is a great quantity of data, another 8-bit value called sub-index is defined for some indices and its range is 0x00~0xFF. The exact parameter in each index can be 8-bit, 16-bit or 32-bit the most.

Each object of CANopen OD is described by a series of sub-protocols, which describe the function, name, index, sub-index, data type, read-write attributes and whether or not it is essential and etc. It guarantees the compatibility among same type of devices from different manufacturers.

The core description sub-protocol of CANopen is CiA301, which includes descriptions of application layer and communication layer, and the others are just supplement and extension. For different industries, a special CANopen sub-protocol is prepared and the number is commonly CiA DS4xx.

SSTS1A servo is a standard CAN slave device and firmly follows CANopen2. OA protocol. It can communicate with all upper computers supporting CANopen2. OA protocol. (Note: subscript h identifies the hexadecimal, subscript b identifies the binary)

Index range	Object				
0000 _h	Not used				
0001_{h} -001F _h	Static data type(standard data type, such as bool, int16)				
0020-003F	Complex data type(predefined structure type formed by standard				
	type, such as PDOCommParam、SDOParam)				
0040_{h} -005F _h	Complex data type set by manufacturer				
0060_{h} -007F _h	Static data type stipulated in device sub-protocol				
0080 _h -009F _h	Complex data type stipulated in device sub-protocol				
00A0 _h -0FFF _h	Save				
1000 -1FFF	Communication sub-protocol area(such as device type, error				
1000_{h} 1777_{h}	register, PDOCommParam, PDO mapping param)				
2000_{h} -5FFF _h	Sub-protocol area set by manufacturer(such as PIDParam)				
6000 _h -9FFF _h	Standard device sub-protocol area(param related to CiA402 protocol)				
A000 _h -FFFF _h	Save				

Overview of OD structure

Overview of common objects

Index	Sub- index	Name	Data type	Permission	Physical dimension	PDO mapping	Default
1000 _h	00 _h	Device type	uint 32	ro		No	00020192 _h
1001 _h	00_{h}	Error register	uint8	ro		Optional	
1002 _h	$00_{\rm h}$	Manufacturer status register	uint 32	ro		Optional	
1002		Predefined error field					
1003 _h	01 _h ~ 08 _h	Error field	uint32	ro		No	
1005 _h	00_{h}	Synchronous COB-ID	uint32	rw		No	00000080 _h
1006 _h	00_{h}	Synchronous cycle period	uint32	rw	μs	No	00000000 _h
1007 _h	$00_{\rm h}$	Synchronous window length	uint32	rw	μs	No	00000000 _h
1008 _h	00 _h	Manufacturer device name	string	CONST		No	SZHC SSTS1A CiA 402 servo
1009 _h	$00_{\rm h}$	Manufacturer hardware version	string	CONST		No	V0.2
100A _h	00 _h	Manufacturer software version	string	CONST		No	V1.0
100C _h	00 _h	Node protection time	uint16	rw	ms	No	0000 _h

100D _h	00 _h	Life factor	uint8	rw		No	00 _h
		Save parameters					
	01 _h	Save all parameters	uint32	rw		No	
1010 _h	02 _h	Save communication parameters	uint32	rw		No	
100D _h 1010 _h 1011 _h 1011 _h 1012 _h 1012 _h 1013 _h 1014 _h 1015 _h 1015 _h 1016 _h 1017 _h 1029 _h 1200 _h	03 _h	Save application parameters	uint32	rw		No	
		Recover default					
		parameters					
	01 _h	Recover all parameters	uint32	rw		No	
1011 _h	02 _h	Recover communication parameters	uint32	rw		No	
	03 _h	Recover application parameters	uint32	rw		No	
1012 _h	00 _h	Time stamp object COB-ID	uint32	rw		No	
1013 _h	00 _h	High resolution time stamp	uint32	rw		No	
1014 _h	00 _h	EMCY COB-ID	uint32	rw		No	80 _h +Node_ID
1015 _h	00 _h	EMCY inhibition time	uint16	rw	×0.1ms		00 _h
1016 _h		Consumer heartbeat time					
	01 _h	Consumer heartbeat time	uint32	rw	ms		
1017 _h	00 _h	Producer heartbeat time	uint16	rw	ms		
1019 _h							
1029 _h		Wrong action object	uint8	rw			
1200 _h		SDO server parameter					
1.400		RPDO communication parameter	REC				
1400 _h	00 _h	Max sub-index	uint8				
~ 1403.	01 _h	COB-ID of RPDO	uint32				
1100h	02 _h	Transmission type of RPDO	uint8				
1600 _h		RPDO mapping parameter					
~	00 _h	Max sub-index	uint8				
1603 _h	01 _h ~0	RPDO mapping target	uint32				

		TPDO communication					
		parameter					
	00 _h	Max sub-index					
	01 _h	COB-ID of TPDO					
1800 _b	02 _h	Transmission type of TPDO					
~		Confinement time of					
1803 _h	03 _h	production					
		forbidden					
	05	Trigger time of					
	00h	event timer					
	06	Synchronize initial					
	00h	value					
1400		TPDO mapping					
\sim		parameter					
1A03 _h	00 _h	Max sub-index	uint8				
	$01_{h} \sim 08_{h}$	TPDO mapping target	uint32				
6060 _h	00 _h	Control mode	int8	rw		RPDO	
6040 _h	00 _h	Control word	uint16	rw		RPDO	
607A _h	00 _h	Target position	int32	rw	pulse	RPDO	
6081 _b	00,	Outline	uint32	rw	rpm	RPDO	
		velocity(limit)					
6083 _h	00 _h	Outline	uint32	rw	ms/1000rpm	RPDO	
		acceleration					
6084 _h	00 _h	Outline	uint32	rw	ms/1000rpm	RPDO	
		deceleration					
	01 _h	ratio numerator	uint32	rw		R-SDO	
6091_{h}		Floctronic goar					
	02_{h}	ratio denominator	uint32	rw		R-SDO	
		Position deviation					
6065 _h	00 _h	excess threshold	uint32	rw	×256pulse	R-SDO	
		Position arriving					
6067 _h	00 _h	threshold	uint32	rw	pulse	R-SDO	
0000	0.0	Positive torque	10		0/	D (D)	
60E0 _h	00h	limit	u1nt16	rw	%0	R-SDO	
COEL	0.0	Negative torque			07	D CDO	
60EI _h	00 _h	limit	uintlo	rw	%0	R-SDO	
60FF _h	00 _h	Target speed	int32	rw	rpm	RPDO	
606D	00	Speed arriving	uint16	rw	rom	R-SDO	
000Dh	00 _h	threshold	umino	1 W	T bu	I SDO	
606F.	00.	Zero speed detection	uint16	rw	rom	R-SDO	
0001 n	0 0 n	threshold	aintito	1 "	1 pm		
6071 _h	00 _h	Target torque	int16	rw	%	RPDO	
607F _h	00 _h	Speed limit	int32	rw	rpm	R-SDO	
6061 _h	00 _h	Mode display	int8	ro		TPDO	
6041 _h	00 _h	Status word	uint16	ro		TPDO	
603F _h	00 _h	Alarm code	uint16	ro	-	TPDO	
6062 _h	00 _h	Command position	int32	ro	pulse	TPDO	
6064 _h	00 _h	Feedback position	int32	ro	pulse	TPDO	

60F4 _h	00_{h}	Position deviation	int32	ro	pulse	TPDO	
606B _h	00 _h	Command speed	int32	ro	rpm	TPDO	
606C _h	00 _h	Feedback speed	int32	ro	rpm	TPDO	
6074 _h	00 _h	Command torque	int16	ro	%	TPDO	
6077 _h	00 _h	Feedback torque	int16	ro	%	TPDO	
	01 _h	Servo node ID	uint8	rw		R-SDO	
2000 _h	02 _h	RS485 baud rate	uint8	rw		R-SDO	
	03 _h	CAN baud rate	uint8	rw		R-SDO	
	01 _h	Torque limit selection	uint16	rw		R-SDO	
	02 _h	Interpolation mode selection	uint16	rw		R-SDO	
	03_{h}	Communication cycle	uint16	rw	ms	R-SDO	
	04 _h	Homing mode	uint16	rw		R-SDO	
2002 _h	05_{h}	Relative/Absolute position control	uint16	rw		R-SDO	
	06_{h}	Motor positive direction selection	uint16	rw		R-SDO	
[07 _h	Over-load level	uint16	rw	%	R-SDO	
	08 _h	Over-speed level	uint16	rw	rpm	R-SDO	
	01_{h}	Motor code	uint16	rw		R-SDO	
	02 _h	Encoder resolution	uint16	rw	ppr or bit	R-SDO	
	03_{h}	Z electrical angle	uint16	rw		R-SDO	
2003 _h	04_{h}	hall101 electrical angle	uint16	rw		R-SDO	
2003 _h	05 _h	Motor pole number	uint16	rw		R-SDO	
	06 _h	Motor rated speed	uint16	rw	rpm	R-SDO	
	07_{h}	Motor rated torque	uint16	rw		R-SDO	
	$08_{\rm h}$	Motor max torque	uint16	rw		R-SDO	
	09_{h}	Motor rated voltage	uint16	rw	V	R-SDO	
2010	01_{h}	Current loop proportional gain	uint16	rw	Hz	R-SDO	
2010 _h	$02_{\rm h}$	Current loop integral time constant	uint16	rw	imes0.1ms	R-SDO	
2011	01_{h}	Velocity loop proportional gain	uint16	rw	Hz	R-SDO	
2011 _h	$02_{\rm h}$	Velocity loop integral time constant	uint16	rw	ms	R-SDO	
	01_{h}	Position loop proportional gain	uint16	rw	1/s	R-SDO	
2012	02 _h	Velocity feedforward gain	uint16	rw	%	R-SDO	
2012 _h	03 _h	Velocity loop proportional gain	uint16	rw	Hz	R-SDO	
	04_{h}	Velocity loop integral time constant	uint16	rw	ms	R-SDO	
2100 _h	$00_{\rm h}$	Servo alarm code	uint16	ro		T-SD0	

4.3.3.3 COB-ID communication object identifier

COB-ID (short for Communication Object Identifier) assigns priorities of objects in communication and distinguishes communication object. It is corresponding to 11-bit frame ID of CAN2. OA, so it's also called CAN-ID. The ID is formed with object function code in high 4 bits and node address Node-ID in low 7 bits, as the following table shows:

COB-ID/CAN-ID										
10	9	8	7	6	5	4	3	2	1	0
Function Code Node-ID										

There is a fixed COB-ID for each communication object of CANopen. The function Code is for data transmission and it defines NMT message and priority of SDO and PDO. The smaller code represents higher priority. Node-ID is address of servo slave station and ranges from 1 to 127.

Communication object	Function Code	Node-ID	COB-ID	Relative object index
NMT	0000 _b	0	0 _h	
SYNC	0001 _b	0	80 _h	$1005_{\rm h}$, $1006_{\rm h}$
EMCY	0001 _b	1~127	80_{h} +Node-ID	1014 _h
TPD01	0011 _b	1~127	180 _h +Node-ID	1800 _h
RPD01	0100 _b	1~127	200 _h +Node-ID	1400_{h}
TPDO2	0101 _b	1~127	280_{h} +Node-ID	1801 _h
RPDO2	0110 _b	1~127	300 _h +Node-ID	1401_{h}
TPDO3	0111 _b	1~127	380 _h +Node-ID	1802 _h
RPDO3	1000 _b	1~127	400 _h +Node-ID	1402 _h
TPDO4	1001 _b	1~127	480 _h +Node-ID	1803 _h
RPD04	1010 _b	1~127	500 _h +Node-ID	1403_{h}
T-SD0	1011 _b	1~127	580 _h +Node-ID	1200 _h
R-SDO	1100 _b	1~127	600 _h +Node-ID	1200 _h
Error control	1110 _b	1~127	700 _h +Node-ID	$1016_{\rm h}, 1017_{\rm h}$

E.g: For RPD02 of No.2 slave station, the COB-ID is 302_h.

4.3.3.4 NMT network management

Network management includes Boot-up information, Heartbeat protocol and NMT information. Based on main-slave communication mode/producer-consumer communication mode, it is used to manage and monitor nodes in monitoring network and mainly achieve: node state control, error control and node start.

4.3.3.4.1 NMT node state

NMT management involves 6 kinds of state of a CANopen node since power on:

- ✓ Initializing: Initialize function parts after power on including CAN controller;
- ✓ Application Reset: Applications of node are reset(started) such as initial values of switching value output and analog quantity output;
- ✓ Communication Reset: CANopen communication of node is reset(started) and comes to effective from now;
- ✓ Pre-operational: CANopen communication of node is prepared and PDO communication cannot be executed, but SDO, parameter configuration and NMT network management is allowed;

- ✓ Operational: CANopen communication is activated when the node receives start command from NMT host. After PDO communication starts, transmit as requested in object dictionary. And SDO also can transfer data and modify parameters;
- ✓ Stopped: PDO communication of node is stopped after receiving stop command from NMT host, but SDO and NMT network management still can do actions to node.

Except for initialization state, NMT host can order any CANopen node in network to switch among other 5 states through NMT command. The CANopen node also can switch state automatically.

The chart below shows the statemachine of CANopen node.

(1) Power on

- (2) Automatic switch to Pre-operational
- (3) (6) NMT switch to Operational
- (4)(7) NMT switch to Pre-operational
- (5)(8) NMT switch to Stopped
- (9) (10) NMT switch to Application Reset
- (12)(13)(14) NMT switch to Communication Reset
- (15) Power off or Hardware Reset

4.3.3.4.2 NMT node boot-up message

After an CANopen slave comes online, in order to prompt the slave(for Hot Swap) or avoid conflict with other slave Node-ID, it must send boot-up message. The COB-ID is 700h+Node-ID, data length DLC is 1 byte and the producer is CANopen slave.

4.3.3.4.3 NMT node state, heartbeat message and node protection/life protection

To monitor current node state and whether CANopen node is online, it is commonly requested in CANopen applications that slaves, which comes power on online, send state message(heartbeat message) at regular time to let the host confirm whether the slave is abnormal or offline.

The COB-ID of heartbeat message and node boot-up message are both 700_h +Node-ID. Data length DLC is 1 byte, representing current state of node: 04_h refers to stop state, 05_h refers to optional state and $7F_h$ refers to pre-optional state.

CANopen slave sends heartbeat message according to the heartbeat productive time (ms) set in 1017_h of object dictionary. The CANopen host (NMT host) will check according to the heartbeat consumption time set in 1016_h . If there is no heartbeat message received after several consumption times, the salve will be considered as offline or malfunction.

Node protection/Life protection functions of $100C_h$ (Protection time) and $100D_h$ (Life factor) are both supported. Node protection is realized by NMT host to check state of NMT slave periodically through remote frame; Life protection is realized by slave to monitor the state of the host through intervals between those remote frame it has received. $100C_h$ (Protection time, ms) refers to interval of node protection remote frame, of which the product with $100D_h$ (Life factor) defines the max query time of host. When $100C_h$ and $100D_h$ are not 0 and receive the first frame of node protection request, life protection is activated. Node protection communication follows the master-slave model, that is, each remote frame from the host must be answered by slave. If the salve does not response in $100C_h$, it will be considered as offline. If no remote frame is received in $100C_h \times 100D_h$, the host will be considered as offline.

Remote	frame	me	ssage from the host:	
			COB-ID	RTR
			700_{h} +Node_ID	1

Node protection response message from the slave:

COB-ID	RTR	DATA
700 _h +Node_ID	0	Status word

Status word of slave is similar to state in heartbeat, but the highest bit of status word is 0 or 1 alternately:

bit7	bit6~bit0						
"1" or "0" alternately	04_{h} is stop state, 05_{h} is optional state, $7F_{\text{h}}$ is pre-optional state						

Suggestion: 100C_h(Protection time, ms) is more than 10ms, 100D_h(Life factor) is more than 2.

4.3.3.4.4 NMT node status switch command

In NMT network management, NMT node status switch command is the core. As the "command" message of host network management, it must be kept firmly in mind by users. All the CAN-ID are OOO_h , with the highest CAN priority. Data length is 2 bytes and the first one refers to command word:

MT messege command								
Word	Definition							
01 _h	Start (Let the node into startup state)							
02 _h	Stop (Let the node into stopped state)							
80 _h	Enter pre-optional state (Let the node into pre-optional state)							
81 _h	Reset node application (Let the node restore initial state)							
00	Reset node communication (Let the CAN and CANopen communication							
οZ _h	initialize again)							

The second byte refers to Node-ID of controlled node, Set as 0 to control all nodes in the network at the same time.

NMT message form

	ртр	DATA			
	KIK	Byte0	Byte1		
$000_{\rm h}$	0	Command word	Node number		

Service supported in each NMT status

Service	Pre-operational	Operational	Stopped
Process data object (PDO)	×	\checkmark	×
Service data object (SDO)	\checkmark	\checkmark	×
Synchronization object (SYNC)	\checkmark	\checkmark	×
Emergency message (EMCY)	\checkmark	\checkmark	×
Network management (NMT)	\checkmark	\checkmark	\checkmark
Error control	\checkmark	\checkmark	\checkmark

4.3.3.5 SDO Service data object

SDO is mainly used for the CANopen host to configure parameters of slaves, that is, objects with low priority in transmission between devices, such as PID param of velocity loop and position loop and PDO configuration param. Service confirmation is the most unique feature of SDO. There will be a response for each information to ensure accurate transmission. In a CAN-open system, slave node often works as SDO server and main node works as the client, which is called "server-client communication". The SDO client can visit object dictionary in server by index and sub-index, so the main node can visit any parameter of slave node object dictionary and SDO is able to transmit data of different length (Decomposed to several messages if more than 4 bytes).

The principle of SDO communication is single. The client sends message with 600_h+Node-ID as CAN-ID, Node-ID is the node address of server and data length is 8 bytes; After receiving, the server replies message with 580,+Node-ID as CAN-ID, this Node-ID is also node address of server and data length is 8 bytes. It is similar to Modbus communication.

SDO message form										
COB-ID DATA (8Bytes)										
T-SD0	580 _h + Node-ID	0 Byte	1 Byte	2 Byte	3 Byte	4 Byte	5 Byte	6 Byte	7 Byte	
R-SDO	600 _h +Node-ID	Command code	Ine	dex	Sub-index	25,000	Da	ata	2,00	

Notice: Lower byte is in the front section and higher byte is in the latter section, which is opposite to the common habit!

The most common SDO protocol is Fast SDO, that is to finish in one round. The condition is that the values read and written ear no more than 32 bits. The command includes index, sub-index and data to be read and written.

Tuno	COB-ID	DATA (8Bytes)								
Type		0Byte	1Byte	2Byte	3Byte	4Byte	5Byte	6Byte	7Byte	
Write request 4 byte		$23_{\rm h}$	·				Da	ta		
Write request 3 byte	601	$601_{h} \qquad \frac{27_{h}}{2B_{h}} \qquad \text{Inde}$				Data				
Write request 2 byte	001 _h			dex	index	Data				
Write request 1 byte		$2F_{h}$	2F _h			Data				
Write Done		60	<u> </u>							
response	581 _h	00 _h	T. 1.	Sub-						
Write Error		80		лех	index		Abort	aada		
response	80 _h				ADOLI	coue				

Fast SDO message——Write Node-ID=1 servo salve object dictionary

Fast SDO message——	-Write	Node-ID=1	servo	salve	object	dictionary
--------------------	--------	-----------	-------	-------	--------	------------

True	COB-ID	DATA (8Bytes)							
туре		OByte	1Byte	2Byte	3Byte	4Byte	5Byte	6Byte	7Byte
Pood	Read 601 _h	40 _h	Index		Sub-				
Keau					index				
Read response 4 byte	$43_{\rm h}$					Data			
Read response 3 byte		47 _h	Tudou		Sub-	Data ——			
Read response 2 byte		$4B_h$		uex	index	Data			
Read response 1 byte	581 _h	$4F_{h}$				Data			
Read Error		80	Index		Sub-	Abort and			
response		00h		uex	index	Abort code			

4.3.3.6 PDO Process data object

The transmission of PDO adopts new mode of data exchange, different from traditional polling mode. Receiving and sending zone in devices are defined before transmission and data will be sent directly to specific unit, which shortens the query time and makes bus communication more efficient.

PDO is unidirectional for real time data transmission, belonging to "producer-consumer" mode. The data length is limited to 1[~]8 bytes. It is mainly for transmission of data needing high frequency exchange, such as order position, feedback position, order speed, feedback speed, order torque, feedback torque and etc.

4.3.3.6.1 PDO object

Referring to slave servo, PDO is divided into RPDO and TPDO according to receiving and sending of servo. For PDO, the final transmission way and content is decided by communication parameter and mapping parameter. SSTS1A servo supports 4 RPDO and 4 TPDO. SSTS1A servo PDO object

Name	COB-ID	CommParam object	MappingParam object
RPD01	200 _h +Node-ID	1400_{h}	1600_{h}
RPD02	300 _h +Node-ID	$1401_{\rm h}$	1601_{h}
RPD03	400 _h +Node-ID	$1402_{\rm h}$	1602_{h}
RPD04	500 _h +Node-ID	1403_{h}	1603_{h}
TPD01	180 _h +Node-ID	$1800_{\rm h}$	$1A00_{h}$
TPD02	280 _h +Node-ID	$1801_{\rm h}$	$1A01_{h}$
TPD03	380 _h +Node-ID	$1802_{\rm h}$	$1A02_{h}$
TPD04	480 _h +Node-ID	1803 _h	1A03 _h

4.3.3.6.2 PDO transmission type

There are two types of PDO transmission: synchronous transmission and asynchronous transmission.

Synchronous transmission (by receiving synchronous object) : Synchronous transmission is to let all nodes upload data or execute orders at the same time by sending synchronous message, which can effectively avoid application logic chaos and imbalance bus load caused by asynchronous transmission, and the node sending synchronous message is generally NMT host. It also can be divided into periodic transmission (cyclic) and aperiodic transmission (acyclic). Periodic transmission is operated by receiving synchronous object (SYNC). It can set 1^2240 objects trigger. Aperiodic transmission is pre-triggerred by remote frame or given event from object stipulated in device sub-protocol.

Asynchronous transmission (triggered by given event): There are two ways to trigger asynchronous transmission. One is to trigger by given object event stipulated in device sub-protocol (such as time transmission and data change transmission). The other is to send remote frame same as COB-ID of PDO.

4.3.3.6.3 PDO communication parameter

PDO communication parameters define COB-ID, transmission type, timing period and etc. RPDO communication parameters locate in $1400_h \sim 15 \mathrm{FF}_h$ of OD index. TPDO communication parameters locate in $1800_h \sim 19 \mathrm{FF}_h$ of OD index. Each index represents a PDO communication parameter set and the sub-index points to exact parameter.

Index	Sub-index	Description	Data type
	00 _h	Number of parameters	uint8
	01 _h	COB-ID	uint32
RPDO		Transmission type:	
$1400_{\rm h}{\sim}15FF_{\rm h}$		0:acyclic synchronization	
		$1{\sim}240$:cyclic synchronization	
TPDO	02 _h	254: asynchronization, given	uint8
$1800_{\mathrm{h}}\sim\!19\mathrm{FF}_{\mathrm{h}}$		event from manufacturer	
		255: synchronization, given	
		event from device sub-protocol	
	02	Production prohibition	uin+16
TDDO	0.05_{h}	confinement time ($\times 0.1$ ms)	umino
$1800 \sim 10 \text{EF}$	05 _h	Trigger time of event timer (ms)	uint16
1000_{h} $\sim 19\Gamma\Gamma_{h}$	06	Initial value of	
	UOh	synchronization	uinto

PDO commu	unication	parameter
-----------	-----------	-----------

Transmission type: Cyclic synchronization and given event from manufacturer are more common.

Production prohibition confinement time: The minimum time interval of PDO sending confinement. It is to avoid sharp increase of bus load. For example, if the digital quantity input is too fast, TPDO sent from state change will be too frequent and bus load increases. So it needs a confinement time as "filter". The time unit is 0.1ms. Trigger time of event timer: Time set for timed PDO. If it's 0, the PDO becomes event change sent.

Initial value of synchronization: PDO of synchronous transmission is sent after receiving several synchronous packages. The initial value is the number of synchronous packages. If set as 2, it means PDO is sent after receiving 2 synchronous packages.

- ✓ When transmission type of RPDO is 0~240, update the latest data to application once receiving a synchronous frame; when transmission type of RPDO is 254 or 255, update the data received directly to application.
- ✓ When transmission type of TPDO is 0, send it if the mapping data changes and a synchronous frame is received.
- ✓ When transmission type of TPDO is 1~240, send it after receiving comparable number of synchronous frames.
- ✓ When transmission type of TPDO is 254 or 255, send it when mapping data changes or event counter arrives.

4.3.3.6.4 PDO mapping parameter

PDO mapping parameters involve pointers pointing at data that PDO needs to send or that is received from corresponding process, including index, sub-index and data length(bits). Data length of each PDO is 8 bits at the most. Each PDO can mapping several objects. Sub-index 0 records the number of objects and sub-index 1~8 are specific mapping objects.

	Drompro 1	or roo mapping	
Fromplog	bit $32{\sim}$ bit 16	bit15 \sim bit8	bit7 \sim bit0
Examptes	Index of object	Sub-index of object	Data length of object
RPD01 mapping 1600_h01_h	6040_{h}	$00_{\rm h}$	10_{h}
RPD01 mapping $1600_h 02_h$	6060 _h	$00_{\rm h}$	08 _h
RPD02 mapping 1601 _h 01 _h	607A _h	$00_{\rm h}$	20 _h
RPDO2 mapping 1601 _h 02 _h	6081 _h	$00_{\rm h}$	20 _h
TPD01 mapping 1A00 _h 01 _h	6041 _h	00 _h	10 _h
TPD01 mapping 1A00 _h 02 _h	6061 _h	00 _h	08 _h
TPDO2 mapping 1A01 _h 01 _h	6064 _h	00 _h	20 _h
TPDO2 mapping 1A01 _h 02 _h	606C _h	00 _h	20 _h

Example for PDO mapping

Here is to analyse mapping parameters of RPD02. Index of mapping object in 1601_h01_h is $607A_h$, sub-index is 00_h and data length is 32 bits; Index of mapping object in 1601_h02_h is 6081_h , sub-index is 00_h and data length is 32 bits; There are 2 objects of RPD02 mapping so 1601_h00_h is 2. 1601_h has run out of 8 bits so there is no more objects.

Index	Sub-index	Value
1601 _h	00 _h	2
1601 _h	01 _h	607A0020 _h
1601 _h	02 _h	60810020 _h

4.3.3.6.5 PDO mapping configuration process

Take TPD01 configuration of slave 2 as example:

Step 1, Make the COB-ID of communication parameter 1800_h in TPD01, that is the most significant bit of value of sub-index 01_h , "set as 1" to nullify previous PD0 mapping. Referring to 4.3.3.3, the COB-ID of TPD01 in slave 2 is 182_h , that is to write 80000182_h into 01_h sub-index of 1800_h to nullify the previous PD0.

Step 2, Set 00^h of mapping parameter 1A00^h in TPD01 as 0 to clear previous PD0 mapping.

Step 3, Assign $01_h \sim 08_h$ of mapping parameter $1A00_h$ in TPDO1 as requested to mapping new object. If it needs to mapping 6041_h and 6061_h into TPDO1, write 60410010_h into sub-index 01_h of $1A00_h$ and write 60610008_h into sub-index 02_h of $1A00_h$.

Step 4, There are two objects according to step 3, so write 2 into sub-index 00_h of mapping parameter $1A00_h$ in TPD01.

Step 5, Write $182_{\rm h}$ into sub-index $01_{\rm h}$ of communication parameter $1800_{\rm h}$ in TPDO1 to make TPDO2 valid.

4.3.3.7 SYNC Synchronization object

Similar to PDO, the transmission mode is producer——consumer mode. The producer sends synchronous frame and all of the other nodes in CAN network can receive it as consumer without feedback. Only one activated synchronous generator is allowed in a CAN network, which commonly is the NMT host.

4.3.3.7.1 Synchronous generator

Objects related to synchronization are 1005_h (COB-ID SYNC) and 1006_h (communication cycle period). The second highest bit of 1005_h decides whether the synchronous generator will be activated or not. When it is set as 1, that is to write 40000080_h to 1005_h , the generator is activated. When writing 80_h to 1005_h , the generator is shut off. 1006_h is the time interval of producing synchronization objects, using μ s as unit.

4.3.3.7.2 Synchronization object transmission frame

Transmission of synchronization PDO is related to synchronous frame.

For synchronization RPDO, once receiving the PDO, it will update it into application in next SYNC.

For synchronization TPDO, it is divided into synchronous cycle and synchronous non-cycle. Transmission type of synchronous non-cycle is 0. Content of PDO mapping object changes and The TPDO will be send in next SYNC. Transmission type of synchronous cycle is 1~240. Once it is designated SYNC, TPDO will be send whether the data is changed or not.

E.g: PDO1 is type 0, RPDO2 is type 5, TPDO1 is type 0, TPDO2 is type 20. Then RPDO1 and RPDO2 will update the latest PDO data to relevant application in next SYNC once receiving PDO; TPDO1 will send TPDO1 in next SYNC only when the mapping data is changed; TPDO2 will send PDO when it is after 20 SYNC, whether the data changes or not.

4.3.3.7.3 Configuration of synchronous generator

4.3.3.8 EMCY emergency message

When there is a fault from CANopen node, a fraction of emergency message will be sent according to standardization. It follows production——consumption model, so other nodes in CAN network can choose to deal with the faulty after the message is sent. SSTS1A driver only sends it but will not deal with it.

Objects related to emergency message include: 1001_h (Error register), 1003_h (Predefined error domain), 1014_h (COB-ID EMCY), 1015_h (Production prohibition time, similar to this in PDO communication parameter). Please notice that when the most significant bit of 1014_h is "Set as 1", it means deactivate EMCY of nodes, and it means activate EMCY when "Set as 0".

			EMCY fo	orm				
COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
80 _h +Node-ID	Error	code	Accordant with 1001 _h	Cu	stom erro	r code by	manufactu	ıre

When the communication is abnormal, the error code should be accordant with it requested by DS301 and auxiliary byte is zero.

When faults described in DSP402 sub-protocol happen to driver, the error code should be accordant with it requested by DS402 and corresponding to object $603F_{\rm h}$.

4.3.4 Example for Using CANopen

Here is to introduce basic operation of CANopen by taking the process of building CAN network with SSTS1A product from us and PLC with CANopen function as example.

4.3.4.1 Graphical hardware configuration

(1) Import file SZHC-CSTS1A.eds

•	-[Import E	DS File		
		Install	EDS File		
		Choose an E	DS file to install		
	S	elect C: /	SZHC-CSTS1A. eds		
		Product	Supplier name	Equip type Product code	Version
	1	CSTS1A	Shenzhen Huacheng Industrial Control Co.,Ltd.	0×20192 0×1402	0×0 🗶
				Novt	Cancol
				Next	cancer

(2) Invoke CANopen function of main station PLC

0) Framework	Value-H32-006		
間 H32-006	CPU Regular Communication port Power failure data saving Password Screen time SOE config Extended bus clock config EtherCAT CAMopen main station	CANopen main station Configure parame communication in Use CANopen m Node ID BAUD COB ID Synchronous cycle (um) Heartbeat time(mm) 2	ters of CANopen tegrated in CPU. main station 1 1000kbps • 128 50000 200 •

(3) After importing EDS file of CSTS1A, choose SSTS1A servo in PLC slave station selection screen and drag it into CAN BUS.

(0) Framework	
0	CAN BUS(0): Master station node ID:1 BAUD: 1000kbps
1 🗐 H32-006	
2	
3	\Box (2) CSTS1A \Box (3) CSTS1A \Box (4) CSTS1A \Box (5) CSTS1A
4	
5	
6	
7	
8	
9	
10	

(4) Double click SSTS1A servo on CAN BUS, and dispose PDO, SDO and other information in CANopen slave station.

CANopen slav	e station config			
CANopen slave station I config	PDO config SDO config CA	Nopen I/O config		
_ Node info				
Node ID	2 🔻	Name	CSTS1A]
Factory code	0000092B	Equip type	CSTS1A (00020192)]
Product code	00001402	Version	00000000]
EMCY COB-ID	82	Node protection COB-ID	702]
Fault control				
Monitor Heartbeat Host monitor Start check — Factory code	timer(ms) 1000 timer(ms) 1200 timer(ms) 2400 Equip type Pr	roduct code	Version	
			OK	Cancel Help

lex	1400		Na	ume Receive PDO Co	ommunication Paramet	ier O
ED	S File param:					
	Index	Sub index	Read/Write		Name	
1	6040	0	RW	Controlword		-
2	6060	0	RW	Modes of opera	tion	
3	6065	0	RW	Position err t	hreshold	
4	6067	0	RW	Position at th	reshold	
5	606D	0	RW	Velocity at th	reshold	
6	6071	0	RW	Target torque		
7	6072	0	RW	Max torque		
8	607A	0	RW	Target operatio	on	
9	607E	0	RW	Home offset		
10	607F	0	RW	Polarity		
11	607F	0	RW	Max_velocity_li	imit	
12	6081	0	RW	Profile_velocit	y	
13	6040	0	RW	Profile_acceler	ation	
Ma	pping param:	Sub index	Name	Type		
	Index	Sub Index	Ivane	Type		
1	6040	0	Controlword	Ulnt16		
2	607A	0	Target_position	Int32		

PDO mapping

SDO configuration

	Index	Sub index	Read/Write	Name
1	6040	0	RW	Controlword
2	6060	0	RW	Modes of operation
3	6065	0	RW	Position err threshold
4	6067	0	RW	Position at threshold
5	606D	0	RW	Velocity at threshold
6	6071	0	RW	Target torque
7	6072	0	RW	Max torque
8	607A	0	RW	Target_operation
9	607C	0	RW	Home_offset
0	607E	0	RW	Polarity
1	607F	0	RW	Max_velocity_limit
2	6081	0	RW	Profile velocity
3	6083	0	RW	Profile_acceleration
4	6084	0	RW	Profile deceleration
5	6085	0	RW	Quick stop deceleration
6	6091	0	RW	Motor revolutions
7	6091	0	RW	Shaft revilutions
8	6098	0	RW	Homing_method
9	60E0	0	RW	PositionTorque Limit Value
20	60E1	0	RW	Negative Torque Limit Value
21	607FF	0	RW	Target_velocity

CANopen mapping

ig	n slave s	tation PI	00 config SDO con	nfig CA	Nopen I/O map	oping			
1	Index	Sub index	Name		Туре	RAM	Downtime clear		
1	6040	0	Controlword		Ulnt16	V, 100	NO		
2	607A	0	Target_operati	ion	Int32	V, 102	NO		
3	6081	0	Profile_veloci	ity	Ulnt32	V, 106	NO	-	
4	6083	0	Profile_accel	eration	Ulnt32	V, 110	NO		
5	6084	0	Profile_decel	eration	Ulnt32	V, 114	NO		
6	6041	0	Statusword		Ulnt16	V,118			
7	6064	0	Position actua	al value	Int32	V, 120			
8	603F	0	Error Code		Ulnt16	V, 124			

(5) Compile hardware configuration correctly

The hardware configuration finished disposing SDO and PDO for main and slave station. CANopen bus is completed.

4.3.4.2 Instruction hardware configuration

Some master stations do not fit graphical hardware configuration. It needs to dispose slave station by single SDO command. Following are examples for hardware configuration.

No.	SDO message	Byte	Byte	Byte	Byte	Byte
		1	3, 2	4	6,5	8,7
	Description	Command code	Index	Sub-index	Low bit	High bit
1	Consumer heartbeat time: $1016_h01_h=14_h$	23_{h}	1016_{h}	01_{h}	0014_{h}	0000 _h
2	RPD01 transmission:1400h02h=00h	2F _h	1400 _h	02 _h	0000 _h	0000 _h
3	RPD01 null: 1400h01h=80000201h	23 _h	1400 _h	01 _h	0201 _h	8000 _h
4	RPD01 clear mapping: 1600h00h=00h	$2F_{h}$	$1600_{\rm h}$	OO_{h}	0000 _h	$0000_{\rm h}$
5	RPD01 write mapping: 1600 _h 01 _h =60400010 _h	$23_{\rm h}$	$1600_{\rm h}$	01_{h}	0010 _h	6040 _h
6	RPD01 new mapping number: 1600,00,=01,	$2F_{h}$	$1600_{\rm h}$	00_{h}	0001 _h	0000 _h
7	RPD01 valid: 1400h01h=00000201h	23 _h	1400_{h}	01 _h	0201 _h	0000 _h
8	RPD02 transmission: $1401_h02_h=00_h$	$2F_{\rm h}$	1401_{h}	02 _h	0000 _h	$0000_{\rm h}$
9	RPD02 null: 1401 _h 01 _h =80000301 _h	23 _h	1401_{h}	01 _h	0301 _h	$8000_{\rm h}$
10	RPD02 clear mapping: 1601,00,=00,	2F _h	1601_{h}	00 _h	0000 _h	0000 _h
11	RPD02 write mapping: 1601 _h 01 _h =607A0020 _h	23_{h}	1601_{h}	01_{h}	0020 _h	$607A_{\rm h}$
12	RPD02 write mapping: 1601 _h 02 _h =60810020 _h	23_{h}	1601_{h}	02 _h	0020 _h	$6081_{\rm h}$
13	RPDO2 new mapping number: 1601,00,=02,	$2F_{h}$	1601_{h}	00_{h}	0002 _h	$0000_{\rm h}$
14	RPD02 valid: 1401 _h 01 _h =00000301 _h	23 _h	1401_{h}	01 _h	0301 _h	0000 _h
15	RPD03 transmission: $1402_h02_h=00_h$	$2F_h$	1402_{h}	02 _h	0000 _h	0000 _h
16	RPD03 null: $1402_h01_h=80000401_h$	23 _h	$1402_{\rm h}$	01 _h	$0401_{\rm h}$	$8000_{\rm h}$
17	RPD03 clear mapping: $1602_h00_h=00_h$	$2F_{h}$	1602_{h}	00 _h	0000 _h	0000 _h
18	RPD03 write mapping: 1602h01h=60830020h	$23_{\rm h}$	1602_{h}	01_{h}	0020 _h	6083 _h
19	RPD03 write mapping: 1602 _h 02 _h =60840020 _h	$23_{\rm h}$	$1602_{\rm h}$	02 _h	0020 _h	$6084_{\rm h}$
20	RPD03 new mapping number: 1602h00h=02h	$2F_{h}$	$1602_{\rm h}$	00_{h}	0002 _h	$0000_{\rm h}$
21	RPD03 valid: $1402_h01_h=00000401_h$	23 _h	1402_{h}	01 _h	0401_{h}	$0000_{\rm h}$
22	TPD01 transmission: $1800_h 02_h = 00_h$	$2F_{h}$	$1800_{\rm h}$	02 _h	0000 _h	0000 _h
23	TPD01 null: 1800 _h 01 _h =80000181 _h	23 _h	$1800_{\rm h}$	01 _h	0181 _h	$8000_{\rm h}$
24	TPD01 clear mapping: 1A00h00h=00h	$2F_{\rm h}$	$1A00_{\rm h}$	$00_{\rm h}$	$0000_{\rm h}$	$0000_{\rm h}$
25	TPD01 write mapping: 1A00 _h 01 _h =60410010 _h	23_{h}	$1A00_{\rm h}$	01 _h	0010 _h	6041_{h}
26	TPD01 write mapping: 1A00h02h=60610008h	23 _h	1A00 _h	02 _h	0008 _h	6061 _h
27	TPD01 write mapping: 1A00,03,=603F0010,	23 _h	1A00 _h	03 _h	0010 _h	603F _h
28	TPDO1 new mapping number: 1A00,00,=03,	$2F_{h}$	1A00 _h	00 _h	0003 _h	0000 _h
29	TPD01 valid: 1800h01h=00000181h	23 _h	1800 _h	01 _h	0181 _h	0000 _h
30	TPD02 transmission:1801 _h 02h=00 _h	$2F_{h}$	1801 _h	02 _h	0000 _h	0000 _h

31	TPD02 null: 1801,01,=80000281,	23 _h	1801 _h	01 _h	0281 _h	8000 _h
32	TPDO2 clear mapping: 1A01,00,=00,	2F _h	1A01 _h	00 _h	0000 _h	0000 _h
33	TPD02 write mapping: 1A01 _h 01 _h =60640020 _h	23 _h	1A01 _h	01 _h	0020 _h	$6064_{\rm h}$
34	TPDO2 write mapping: 1A01 _h 02 _h =606C0020 _h	23 _h	1A01 _h	02 _h	0020 _h	606C _h
35	TPDO2 new mapping number: 1A01,00,=02,	$2F_{h}$	1A01 _h	00 _h	0002 _h	0000 _h
36	TPD02 valid: 1801 _h 01 _h =00000281 _h	23 _h	1801 _h	01 _h	0281 _h	0000 _h
37	Set servo mode: $6060_h00_h=01_h$	$2F_{h}$	6060_{h}	OO_{h}	0001_{h}	0000 _h
38	Turn off synchronous generator: $1005_h00_h=00000080_h$	23 _h	1005_{h}	00_{h}	0080 _h	0000 _h
39	Write synchronous cycle: 1006h00h=00003A98h	$23_{\rm h}$	1006 _h	00_{h}	3A98 _h	$0000_{\rm h}$
40	Turn on synchronous generator: $1005_h00_h=40000080_h$	23 _h	1005 _h	00 _h	0080 _h	4000 _h

$4.\,3.\,4.\,3$ Main station action control program

It differs a lot to write action control program for various main stations. It mainly contents NMT status switch and action command planning. There will be no further discussion.

4.4 ServoTuner Upper Computer Software

ServoTuner upper computer software, as a servo master port in PC end, communicates with servo slave station by serial port. It fits standard Modbus RTU protocol and can connect with servo through USB to RS485 transmitter. With ServoTuner, users can execute JOG servo test run, read/write servo parameters and collect servo running curves.

4.4.1 Read/Write Servo Parameters

Prepare USB to 485 communication transmitter. (Remember to install relative program) Following are steps of setting servo parameters by ServoTuner upper computer software.

Step 1: Connect servo with PC to let servo power on through USB to 485 communication transmitter. Click ServoTuner.ex to enter main screen of servo upper computer software. (Shown in P1) Create new parameter table, same as using Word software. (Shown in P2)

P1 Main screen of servo upper computer software

ServoTuner					-	- 🗌	×
File Edit Commu	unication Operation	Setting	Windows	Help			
	902		000 000 000	Ē			
	Param conf:	ig table 1 (c	bject(*,	spara))			\times
	Address	Form	Current				
> 🔲 🖽 Usual		Sign					
> 🗌 🛅 Servo system		Sign					
> 🗌 🛅 Position loop		Sign					
> 🗌 🖽 Velocity loop		Sign					
> 🗌 🛅 Current loop		Sign					
〉 _ 田 FID 〉 _ 田 System state 〉 _ 田 Alarm history							
	◯ Com	munication () Lo	cating mpleted	🔵 Servo alarm	○ Servo prepared	🔿 Servo en	able

P2 Create new parameter table

Step 2: Click "magnifier" searching button in P3, and the upper computer will automatically find servo connected. Check grouping parameter on the left or write parameter address in "address bar" in the table to read/write servo param. (Shown in P3)

File Edit Communic	ation_Ope	ration Set	ting Wind	ows Help	}		~
SamaParan	Param c	onfig table	e 1 (object (*, spara))	New value	2	×
Servoraram	Augure 33	Name	Sign	Current	New value		-
Bervo system			Sign	-			
Position loon			Sign				
Velocity loop			Sign	-			
Current loon			Sign				_
> _ [⊞] PID > _ [⊞] System state > _ [⊞] Alarm history							
	○ Commun	ication OL	ocating com	mleted Oservo	alarm Oservo prepared Ose	rvo ena	bl

P3 Read/write servo param through param table

4.4.2 Collect Servo Curves

Create curve chart, same as new parameter table. Collect curves of parameters related to current loop, velocity loop and position loop.

°ጬ ServoTu File Edit	nner Communication	Operation Se	etting Window	s Help			×
	12,9	@			-J.		
	Param config	table 1(objec	et (*, spara))	\mathbf{x}	Curve 2(object(*, scurve)))	×
371.4		Curve		371. 4	2, 857: 0		
1 204. 2					1, 378. 3 no		
37, 0 37, 0				Jack Strand Stra	-100. 5 To 100		
-130. 2				-130. 2	-1, 579. 3		
-297.4	02.5	125.0	187.5	297.4	-3, 058, 0		
	• Given	input •FeedbackSpd	•Control output				
Position loc Curveloop: C	pp[Velocity loop Cur urrent V]Given type: Step given value	Data collection or	etting Curve	-Operation-	Single fetch		
	Sin given frequency Default Sample cycle	0 = 1	Hz (0~65535) 0.25ms (1~20)	Stop curve recor Stop	Start		

P4 Collect servo dynamic curve by curve figure

Please refer to servo upper computer software document for more functions.

Step 3: Click "Start state monitoring" button to read parameters of servo driver in real time.

4.5 Set Motor Code by ServoTuner

It needs to set motor code to match the driver before use servo system because it can drive servo motor in various power levels and voltage levels. For example, the SSTS1A100 driver supports 24V/100W/200W, 48V/100W/200W/400W and other motors. After getting the sole registered motor code(P182), motors can be used normally. Registered motors are shown in the following list.

Motor model	Motor spec	P182
HC7J-040130F1	24v/100w/6.5A/0.32Nm/3000rpm/2500Line	1
HC7J-040130D1	48v/100w/3.5A/0.32Nm/3000rpm/2500Line	2
HC7J-060230F1	24v/200w/11.5A/0.64Nm/3000rpm/2500Line	3
HC7J-060230D1	48v/200w/6.5A/0.64Nm/3000rpm/2500Line	4
HC7J-060230E1	36v/200w/7.5A/0.64Nm/3000rpm/2500Line	5
HC7J-060430D1	48v/400w/11A/1.27Nm/3000rpm/2500Line	6
HC7J-060430F1	24v/400w/20A/1.27Nm/3000rpm/2500Line	31
HC7J-060430E1	36v/400w/14.5A/1.27Nm/3000rpm/2500Line	32
HC7J-080830D1	48v/750w/19.5A/2.4Nm/3000rpm/2500Line	33
HC7J-080830F1	24v/750w/40A/2.4Nm/3000rpm/2500Line	61
HC7J-131025D1	48v/1.0kw/25A/3.8Nm/2500rpm/2500Line	62
HC7G-131515D1	48v/1.5kw/45A/10Nm/1500rpm/2500Line	63
HC7G-131520D1	48v/1.5kw/40A/7.4Nm/2000rpm/2500Line	64
HC7C-131830D1	48v/1.8kw/40A/5.7Nm/3000rpm/2500Line	65
HC7G-132020D1	48v/2.0kw/50A/10Nm/2000rpm/2500Line	66
HC7J-132025D1	48v/2.0kw/58A/7.7Nm/2500rpm/2500Line	67

There is a default motor code when servo drivers leave the factory. Following steps show how to modify it:

Step 1:

- (1) P282 writes command "16384";
- (2) P182 writes motor code to be set;

(3) Click "Save in EEPROM(E)" and wait for the dialog box "Save in EEPROM and valid after restart" popping out. Then click "OK";

ile Edit	Communica	tion	Operation	Setting	Windows Help	-		
	A 9	0			000		1	
		Y			000		1	

Notice	X
Save in EEPROM and vali	d after restart!
	ОК

(4) New motor code is effective when the driver is power on again after turned off. Step 2:

(1) Click "Click to set motor code" and the motor code dialog box will pop out. Choose and click "OK". When there comes the notice "Resume to default setting completed", click "OK";

ServoTunner		— 🗆 ×
File Edit Communication	Operation Setting Windows Help	
	@ Z 🖹 🖹 🚟 🖃	1
120	Click to set motor c	:ode)

(2) New motor code is effective when the driver is power on again after turned off. Under-voltage node, discharge node and over-voltage node of servo system in different voltage level are shown in the table below.

Voltage level of	Under-voltage	Energy braking voltage absorb node	Over-voltage
servo system	alarm node	(with external braking resistor)	alarm node
24v	16v	30v	36v
36v	30v	45v	48v
48v	40v	55v	60v
60v	40v	70v	80v

4.6 Update Servo Program by ServoTuner

Steps to burn:

(1) Turn all dial switches of driver down (turn to "ON"), the driver is power on;
(2) Click"Setting"—"Burn tool"—enter password"16384"—"Low-voltage servo firmware burn tool";

Carlot Alexandria Carlot and Carlo	Turum Co	oning table	e 1 (object (*	⊧, spara))	New York - Information Statement	- 23
ServoParam	Address	Name	Form	Current	New value	
Usual			Sign			
E Servo system			Sign			
B Position loop			Sign			
E verocity roop			Sign			
Current loop			Sign			
H System state						
Harm history						

I

ort Operation	InfoWindow		
SerialNo:			~
BAUD: 115200 🗸			- 1
0pen			- 1
File			
Path: Select			
	Clear	 	
Length: 512 V			

(3) Click "Open" in port operation area—Click "Select" in file setting area— "V210XX.bin";

Note:

V21072.bin is 10A, 50A program V21072_20A.bin is 20A program

(4) Click "Enter IAP Menu" — Click "UpDate" — Wait for burning;

Port Operation	-InfoWindow					
	File size:115880					
SerialNo: COM6	IAP Main Menu(V 0.2.0)					
PAUD 115000	update					
BAUD: 115200	upload					
10 10 10 10 10 10 10 10 10 10 10 10 10 1	menu					
0pen	runapp					
-File	Update Over!					
Path: Soloot	Name:SSTSIA_V21088_20A. Bin					
ratii. Select	Size:115660 bytes.					
C:\User\hc\Desktop\	Run to app.					
Length: 512 V	Clear					
	UpData UpLoad Erase IPA APP					

(5) Turn dial switches back(up) after updating and power on again.

Please contact for technical support in case of repeated failures.

Chapter 5 Servo Alarm Diagnosis and Solutions

Green 1amp	Red 1amp	Alarm type	Description	Solutions
Flash	Off	No alarm	None	None
Quick flash	On	Over-current ★	Triggered when instant current is 4.5 times of max current of motor	Check whether the driver is broken;Check whether the motor is broken; Check the wiring of motor; Check whether the driver matches the motor.
Slow flash	On	0ver-heat★	Triggered when the MOS tube is over-heated	Temperature of environment is too high; Heat elimination is poor; Servo has been over-load for too long.
Quick flash	Quick flash	Encoder faulty★	Triggered when encoder is disconnected or electric angle is abnormal	Check whether the encoder line is loose; Check whether the wiring of encoder is loose; Check whether the encoder is disconnected.
Slow flash	Slow flash	EEPROM error ★	Triggered when EEPROM writes and reads abnormally	Check whether motor parameters are set correct; Try to restore the factory settings.
Off	Quick flash	Over-load	Triggered when motor torque is larger than over-load level and keeps for a while	Check over-load setting; The actual load of motor is too large; Motor is not well connected.
Off	Slow flash	Over-speed	Triggered when motor rotates faster than over-speed level	Check over-speed setting; PID parameter is set unreasonable.
On	Quick flash	Over-voltage	Triggered when generatrix voltage is higher than standard	On and off too frequently; Check whether the braking unit is reasonable.
On	Slow flash	Under-voltage	Triggered when generatrix voltage is lower than standard	Check whether input power is on; Check whether input voltage of servo end is up to standard; Evaluate whether the power supply is appropriate.
Slow flash	Quick flash	Excessive position deviation	Triggered when position following deviation is larger than over-deviation level.	Check over-deviation setting; Adjust PID parameter if the actual load is too large.
Quick flash	Slow flash	Travel limit alarm	Triggered when travel limit function is set different from limit signal.	Check parameters; Check external limit signal.
On	On	CAN communication faulty	CAN communication alarm	Check wiring and master station.

Servo driver alarm description and solution

- (1) Types of malfunction with \star in the list cannot be removed by the upper system. It needs to check the situation of the device and power on again.
- (2) Types of malfunction without \star in the list can be removed by the upper system.

Chapter 6 Warranty Terms

6.1 General Rules

We, Shenzhen Huacheng Industrial Control Co.,LTD, adhere strictly to relevant laws to formulate post-sale service rules.

6.2 Servo Warranty Period

The warranty period is one year after purchase. For motors with brake, the

standard is that acceleration/deceleration times of axis is not beyond limit. We provide free maintenance for malfunction not caused by misuse or vandalism within warranty period. For malfunction within warranty period caused by following reasons, there will be a certain fee:

- (1) Malfunction or damage caused by operations in contravention of the user manual;
- (2) Malfunction or damage caused by disassembly or converting privately;
- (3) Damage caused by force majeure (earthquake, volcano, typhoon, tsunami, flood, mud avalanche, thunderstorm and etc.);
- (4) No valid purchase voucher;
- (5) Serial number on the shell does not match the number inside.

6.3 Servo Warranty Process

Warranty process:

- (1) Please fill in Maintenance List and post it to our maintenance department if there is any malfunction or damage.
- (2) Maintenance cost refers to the Maintenance Price List.
- (3) The final explanation right of these terms is reserved by Shenzhen Huacheng Industrial Control Co.,LTD.

Shenzhen Huacheng Industrial Control Co.,LTD

© 0755-26417678/27470348 Fax: (86) 075526417678 Official Website: www.hc-system.com

Address: 8/F,Zhengqilong Building No.108,Gushu 1st Road,Baoan.Shenzhen